AFOEHL REPORT 89-048EQ0094FEF

Compliance Testing of the Phosphoric Acid Anodizing Line Wet Scrubber, Metal Bonding Facility, Building 375, Kelly AFB TX

JAMES A. GARRISON, Maj, USAF, BSC

JUNE 1989

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC)
Human Systems Division
Brooks Air Force Base, Texas 78235-5501

89 8 18 012

•	REPORT C	OCUMENTATIO	N PAGE		Form Approved OMB No 0704-0188	
•	LA REPORT SECURITY CLASSIFICATION UNClassified		16 RESTRICTIVE MARKITIGS			
	SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Distribution is unlimited,			
	26. DECLASSIFICATION/DOWNGRADING SCHEDU N/A	Approved for Public Release				
	4. PERFORMING ORGANIZATION REPORT NUMBE	S. MONITORING ORGANIZATION REPORT NUMBER(S)				
	89-048EQ0094FEF					
	AF Occupational and Environ- mental Health Laboratory	73. NAME OF MONITORING ORGANIZATION				
	6C ADDRESS (City, State, and ZIP Code)	ECQ	7b. ADDRESS (C	ity, State, and ZIP (Code)	
المائمة والمائمة والمائمة	Procks AFR TV 70225 5501					
- Carrier Company	Brooks AFB TX 78235-5501 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMEN	NT INSTRUMENT ID	ENTIFICAT	ION NUMBER
	Same as 6a					
	BC. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	FUNDING NUMBER		Two are ways
	Same as 6c		ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO
	.11. TITLE (Include Security Classification) Compliance Testing of the Phosph Bldg 375, Kelly AFB TX	oric Acid Anodi	zing Line We	et Scrubber,	Metal	Bonding Facility,
	:2. PERSONAL AUTHOR(S)					
	Maj James A. Garrison 13a. TYPE OF REPORT 13b. TIME CO	DAE BED	14. DATE OF REP	ORT (Year, Month,	Day) 15	. PAGE COUNT
A CONTRACTOR OF THE PROPERTY O		6,9-10 Jan 89	June 1989 154			
	6. SUPPLEMENTARY NOTATION					
	17. COSATI CODES	ŧ	(Continue on reverse if necessary and identify by block number)			
a deal of the same	FIELD GROUP SUB-GROUP	Chromium S Hexevalent Ch Metal Bonding		rubber Ga	rrison	
en e	19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)	. ALTO LONDO	TROLE	JEST LINU
	At the request of HQ SA-ALC/EM, emission testing of the exhaust	from the phosph	oric acid ar	nodizing tank	line,	metal bonding
	facility, Bldg 375, Kelly AFB TX Texas Air Control Board (TACB) P phosphoric acid, sulfuric acid,	ermit Exemption total chromium	X-16361 whi and hexavale	ich required ent chromium	determ emissi	nination of ons from the wet
	scrubber control device on the a results and make the final deter anodizing line exhaust.	modizing line e mination as to y air politic	whether addi	em. TACB will tional contr	ol is	yze the emission needed on the
	`) 		•			
1	20 DISTRIBUTION/AVAILABILITY OF ABSTRACT	·	A ABSTRACT	COURTY OF ACCION	A TION	
•	WUNCLASSIFIED/UNLIMITED - SAME AS R	IPT DTIC USERS	Ur	ECURITY CLASSIFIC IClassified		
	James A. Garrison, Maj, USAF, BS	C ,	226 TELEPHONE (Include Area Code) 22c OFFICE SYMBOL (512) 536-2891 ECQ			

CONTENTS

				Page
	DD Form 14 Illustrati	_		iv
I.	INTRODUCTI	ON		1
II.	DISCUSSION	I		1
	C. Applic	ound Description Deable Standards Methods and Procedures		1 1 10 10
III.	CONCLUSIO	V		18
.VI	RECOMMENDA	ATIONS		19
	Reference	3		21
	Appendi x			
	A B C D E F G H I J K L M	Personnel Information Texas Air Control Board Rule Special Condition No. 1 of F Texas Regulation II (31 TAC, Air Pollution From Sulfur Preliminary Field Data Hexavalent and Total Chromit Phosphoric Acid Field Samplin Sulfuric Acid Field Samplin Total Chromium Field Samplin Hexavalent Chromium Field Sa Laboratory Results Isokinetic and Emissions Cal Calibration Data	Permit Exemption X-16361 Chapter 112 - Control of Compounds Im Sampling Methods Ing Data	23 27 33 37 43 49 77 89 97 109 121 127 135
	Distribut	ion List Oric Copy MSPECTE	Accession For NTIS GRA&I DTIC TAB Unannounced Justification Py Distribution/ Availability Codes Avail and/or Dist Special	151

Illustration

Figure	Title	Page
1	Anodizing Line Process Diagram	2
2	View of Anodizing Line	4
	Typical Aluminum Skin	5
3 4 5	COLAG Mist, Vapor and Fume Collector	6
5	View of Scrubber During Testing	7
6	View of COLAG	8
7	View of Reaction and Eliminator Pads Through	
	Transparent Observation Window	9
8	Liquid Flow Rate Curve	11
9	View of COLAG Showing Location of Static Pressure Taps	13
10	EPA Method 5 Sampling Train	1 4
11	Phosphoric Acid Sampling Train	16
12	Sulfuric Acid (Method 8) Sampling Train	17
Table		
1	Stack Emissions Test Results	20

I. INTRODUCTION

On 5-6 Jan 89 and 9-10 Jan 89 source emission testing was accomplished on the exhaust from the phosphoric acid anodizing tank line, a system within the metal bonding facility located in Building 375, Kelly AFB TX. Testing was performed by the Air Quality Function, Consultant Services Division, the Air Force Occupational and Environmental Health Laboratory (AFOEHL/ECQ). The survey was conducted to satisfy Special Conditions of Texas Air Control Board (TACB) Permit Exemption X-16361 which required determination of phosphoric acid (H_3PO_4), sulfuric acid (H_2SO_4), total chromium (Cr) and hexavalent chromium (Cr+6) emissions from the wet scrubber control device on the anodizing line exhaust system. Personnel involved with on-site testing are listed in Appendix A.

II. DISCUSSION

A. Background

On 19 Sep 1988, HQ SA-ALC/EM, Kelly AFB TX requested source emissions testing of the exhaust from the phosphoric acid anodizing tank line. The requirement for testing was generated by a Notice of Violation (NOV) received from TACB for not demonstrating compliance with TACB Rule 116.4 of Texas Air Control Board Regulation VI (31 Texas Administrative Code, Chapter 116), Control of Air Pollution by Permits for New Construction or Modification (Appendix B) and Special Condition #1 of Permit Exemption X-16361 (Appendix C). Rule 116.4 requires that holders of permits and/or exemptions shall comply with any and all special conditions contained therein. Special Condition #1 requires stack sampling and other testing as needed to establish the actual pattern and quantities of air contaminants being emitted into the atmosphere from the exhaust system.

B. Site Description

The phosphoric anodizing line is used to prepare aluminum skins for bonding operations. The line consists of a series of eight (8) tanks through which the aluminum skins are sequentially processed (one part is processed through the entire line before the next one is started). A process diagram of the line is shown in Figure 1. A description of the line follows (times are approximate):

- 1. Tank #1, Degreaser Tank: Contains 110 gallons of perchloroethylene maintained at 240°F. Skins remain in the tank for 15 minutes.
- 2. Tank #2, Alkaline Cleaning Tank: Contains 1,778 gal of Isoprep #44, a mildly alkaline cleaning solution which acts as a pre-cleaner prior to the anodizing process. The solution is maintained at 135°F and parts remain in the tank for 15 minutes. Isoprep contains: (1) sodium salts of borates, phosphates, silicates, carbonates and sulfates and (2) soap and synthetic detergents.

. Figure l

- 3. Tank #3, Hot Rinse Tank: Parts are washed with water at room temperature (approximately 74°F) for 15 minutes.
- 4. Tank #4, Hot Deoxidize Tank: Contains 1,778 gal of a mixture of sulfuric acid, sodium dichromate and deionized water which acts as another pre-cleaner prior to the anodizing process. This solution actually etches the surfaces of the aluminum parts. The mixture is maintained at 150 \pm 10°F and parts remain in the tank for 25 minutes.
- 5. Tank #4, Rinse Tank: Parts are washed with water at room temperature for 15 minutes.
- 6. Tank #6, Phosphoric Acid Anodize Tank: Contains 1,778 gallons of phosphoric acid and water. The solution is maintained at 77°F and parts remain in the tank for 25 minutes. An electrical potential of 15 volts do is impressed across the part; amperage varies according to the size of the part.
- 7. Tank #7, Final Rinse Tank: Parts are washed with water at room temperature for 15 minutes.
- 8. Tank #8, Dryer tank: Parts are dried with 160°F air until completely dry.

Figure 2 provides a view of the anodizing line showing the various tanks which make up the system. Figure 3 shows an aluminum skin similar to the ones processed during emissions testing. The part measures approximately 3x6 feet on edge and 0.02 inches thick.

Emissions control equipment consists of a wet scrubber and the associated exhaust stack and support structure located outside Building 375. The main component of the scrubber system is the COLAG (Contact of Liquid And Gas) Mist, Vapor and Fume Collector, Size 252, manufactured by American Air Filter. A diagram of the COLAG showing its main components is presented in Figure 4. Figures 5 and 6 provide an overall view of the scrubber system and a closeup of the COLAG unit, respectively.

The COLAG uses a set of scrubbing pads to clean the contaminated air stream. Air enters the unit at a high velocity and is distributed over the inlet to the scrubber section by a perforated plate. Water is supplied to the plate through nine metering valves and is entrained in the air stream and carried up to the reaction pad. The reaction pad becomes completely flooded with water, thus providing a liquid-gas contact surface which scrubs the exhaust gases. Water droplets passing through the reaction pad impinge on the sloped eliminator pads. Contaminated water from the eliminator pads is channeled to internal drains and out of the unit to a storage tank. Figure 7 shows the reaction and eliminator pads through a transparent acrylic observation window in the COLAG. The COLAG is equipped with a fiberglass reinforced plastic stack which contains an inline centrifugal blower rated at 20,000 cubic feet per minute (CFM) at a pressure drop across the blower of 9 inches of water pressure. The motor which drives the blower is rated at 50 horsepower (hp) and 1750 revolutions per minute (RPM). This blower provides the exhaust capacity for the anodizing tank line exhaust system.

FIGURE 2. VIEW OF ANODIZING LINE

FIGURE 3. TYPICAL ALUMINUM SKIN

FIGURE 4. COLAG MIST, VAPOR AND FUME COLLECTOR

FIGURE 5. VIEW OF COLAG

FIGURE 6. VIEW OF SCRUBBER DURING TESTING (ARROW INDICATES COLAG)

FIGURE 7. VIEW OF REACTION (1) AND ELIMINATOR (2) PADS THROUGH TRANSPARENT OBSERVATION WINDOW

C. Applicable Standards

Regulations governing allowable emissions of sulfuric acid are defined under Texas Regulation II (31 TAC Chapter 112) - Control of Air Pollution from Sulfur Compounds, Paragraph 112.41 (Appendix D). Regulations state that emissions of sulfuric acid from a source will not exceed: (1) a net ground level concentration of 15 micrograms per cubic meter ($\mu g/m^3$) of air averaged over any 24-hour period, (2) a net ground level concentration of 50 $\mu g/m^3$ of air averaged over a 1-hour period of time more than once during any consecutive 24-hour period or 100 $\mu g/m^3$ of air maximum at any time. The TACB uses a dispersion model to determine ambient concentrations based on the pollutant emission rate from the source.

There are no published standards for ambient concentrations of phosphoric acid, total chromium and hexavalent chromium. To determine an acceptable ambient concentration for these pollutants, the assigned TACB permit engineer determines the ground level concentration and provides this data to a health effects group. The health effects group then provides feedback as to the associated health risk. Based on the risk assessment, a determination is made as to what, if any, additional controls are needed on the emission source.

D. Test Methods and Procedures

Test methods, equipment, sample train preparations, sampling and recovery, calibration requirements and quality assurance were done in accordance with the applicable methods and procedures outlined in 40 CFR 60, Appendix A. A performance test consisted of three test runs of 96 minutes each (test 1 on 5 Jan was 120 min) for each of the pollutants of concern. The results of the three runs were averaged for a final emission value.

1. Anodizing Line/Scrubber Operation

- a. The line was operated in a normal day-to-day mode with one part sequenced through the process at any one time. The time required to process one part was initially assumed to be approximately 120 minutes (min) which is the summation of times required for the subprocesses described in Paragraph B. However, after the first aluminum skin was processed through the anodizing line for emissions testing on 5 Jan, we determined that 96 minutes was the actual process time. Therefore, except for the first test run on 5 Jan, all test runs were 96 minutes long.
- b. All tank temperatures were maintained at the levels described in Paragraph B.
- c. Water supply rate to the COLAG is controlled by the water supply pressure and the positioning of the nine metering valves controlling water to the perforated plate. During testing, the water pressure was 20.5 pounds per square inch (psi) and the metering valves were opened greater than two turns. Based on the Liquid Flow Rate Curve supplied by the manufacturer (Figure 8), water supply rate to the unit was determined to be approximately 11 gallons per minute (gpm).

COLAG Size	21	42	84	168	252	336	504
Number of Valves	1	1	3	6	9	8	12

NOTES:

- 1. FOR IMPERIAL VALVES.
- 2. ON UNITS WITH MULTIPLE VALVES, ALL VALVES MUST BE OPENED AN EQUAL NUMBER OF TURNS UNTIL DESIRED PRESSURE/FLOW IS ATTAINED.

FIGURE 8. LIQUID FLOW RATE CURVE

d. Pressure drop across the scrubber was measured at pressure taps located on the inlet and outlet sides of the scrubber portion of the COLAG. These points are indicated by the arrows in Figure 9. The inlet and outlet pressures were -1.8 inches of water (" H_2O) and -8.8 " H_2O , respectively. The pressure drop across the scrubber during testing was 7.0 " H_2O .

2. Preliminary Procedures

Sampling ports had to be installed on the scrubber stack prior to testing and were located 0.6 stack diameters upstream from the stack exit and greater than 4.0 stack diameters downstream from any disturbance (straightener vanes downstream from blower). Based on a 48 inch inside stack diameter, port location and type of sampling (particulate), a total of 24 traverse points were determined for emission evaluation. The sampling time for the first test run on 5 Jan was 120 minutes; therefore, the sampling time for each point in the scrubber stack was 5 minutes. The sampling time for all subsequent test runs was 96 minutes with the sampling time for each point being 4 minutes. An illustration showing port locations and sampling points is provided in Appendix E.

Prior to the initial sample run on the stack, cyclonic flow was determined. For acceptable flow conditions to exist in a stack, the average of the absolute value of the flow angle taken at each traverse point must be less than or equal to 20 degrees. The flow angle in the scrubber stack averaged 39 degrees which indicated an unacceptable flow condition. Straightening vanes were constructed and installed directly above the blower which brought the average flow angle to 6 degrees. Cyclonic flow results are provided in Appendix E. Prior to each test, a preliminary velocity pressure and temperature traverse was accomplished in order to size the sampling nozzle and ensure isokinetic sampling.

3. Sampling Equipment

Particulate samples were collected using variations of the EPA Method 5 sampling train shown in Figure 10. The standard train consists of a buttonhook probe nozzle, heated glass probe, heated glass filter, impingers and a pumping and metering device. The nozzle is sized prior to each sample run so that the gas stream can be sampled isokinetically; in other words, the velocity at the nozzle tip is the same as the stack gas velocity at each point sampled (if the percent of isokinetic sampling is greater than 90% and less than 100% results are acceptable). Flue gas velocity pressure is measured at the nozzle tip using a Type-S pitot tube connected to a 10 inch inclinedvertical manometer. Type K thermocouples are used to measure flue gas as well as sampling train temperatures. The probe is heated to minimize moisture condensation. The heated filter is used to collect particulate materials. The impinger train (first, third and fourth impingers: modified Greenburg-Smith type, second impinger: standard Greenburg-Smith design) is used as a condenser to collect stack gas moisture as well as hold pollutant collection media. The pumping and metering system is used to control and monitor the sample gas flow rate.

FIGURE 9. VIEW OF COLAG SHOWING LOCATION OF STATIC PRESSURE TAPS

FIGURE 10. EPA METHOD 5 SAMPLING TRAIN

Since exhaust gas was essentially conditioned air from inside Building 375, molecular weight was assumed to be 29. No ORSAT apparatus was used to determined stack gas molecular weight.

4. Test Procedure

Since emissions were considered to be particulate or aerosol in nature, our sampling strategy utilized EPA Method 5 sampling procedures and equipment except when modified for the particular pollutant of concern. Any modifications that were made are discussed under the test procedures discussed below. A complete test for each of the pollutants comprised three complete sample runs. The final emission value for each pollutant was the average of the results of emissions obtained for each of the three sample runs.

a. Phosphoric acid

The Method 5 sampling train was modified by removing the particulate filter between the probe and the first impinger. The modified train is shown in Figure 11. The distilled water used in the first two impingers of the Method 5 train was used as the collection media for phosphates as well as for collecting stack gas moisture. The nozzle, probe liner and glassware before the first impinger and between impingers was washed with the distilled water. The impinger media and wash were combined and analyzed for phosphates by ion chromatography. A blank sample of distilled water used as the collection media was also analyzed for phosphates.

b. Sulfuric Acid (H₂SO₄)

EPA Method 8, "Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources," was used for determining $\rm H_2SO_4$ emissions. This test method is found in Appendix A to Title 40, Code of Federal Regulations, Part 60 (40 CFR 60). The first impinger contained 100 ml of 80 percent isopropanol solution (isopropanol and distilled water), the collection media for $\rm H_2SO_4$. Since sulfur dioxide (SO₂) was not of concern, we modified the train by replacing impingers 2 and 3 which contained the SO₂ collection media (hydrogen peroxide) with the following:

- (1) impinger 2: Modified type impinger containing 100 milliliters (ml) of distilled water.
 - (2) impinger 3: Modified type impinger, empty.

The Method 8 sampling train is shown in Figure 12.

We used an average stack gas moisture content based on moisture determinations from the nine test runs for the other three pollutants. The percent moisture content did not differ significantly during any of the test runs (moisture percent ranged from 1.4 - 2.8% with an average of 1.6%). All other Method 8 test methods and procedures were followed. Samples were analyzed using the barium perchlorate titration method described in Method 8.

FIGURE 11. PHOSPHORIC ACID SAMPLING TRAIN

FIGURE 12. SULFURIC ACID (METHOD 8) SAMPLING TRAIN

c. Total Chromium

Sampling for total chromium was accomplished according to the procedures provided in Appendix F with respect to "very low chromium levels" using the "impinger sampling train" which is the Method 5 train modified by removing the heated glass filter (Figure 11). Prior to testing, the nozzle, probe and impingers were rinsed with 0.1 N nitric acid (HNO3) followed by distilled water to remove any residual chromium. The collection media in the first two impingers was 0.1 N HNO3. A collection media blank was subjected to the same preparation and analysis as the sample. Probe and glassware rinses were done with the same solution as in the impingers. The impinger collection media was combined with the probe and glassware rinse for final analysis. Graphite furnace atomic absorption was used for determining total chromium.

d. Hexavalent Chromium

Sampling for hexavalent chromium was accomplished according to the procedures provided in Appendix F with respect to "very low hexavalent chromium levels" using the "impinger sampling train" which is the Method 5 train modified by removing the heated glass filter (Figure 11). Prior to testing, the nozzle, probe and impingers were rinsed with 0.1 N HNO3 followed by distilled water to remove any residual chromium. The collection media in the first two impingers was 0.1 N sodium hydroxide (NaOH). A collection media blank was subjected to the same preparation and analysis as the sample. Probe and glassware rinses were done with the same solution as in the impingers. The impinger collection media was combined with the probe and glassware rinse for final analysis. Graphite furnace atomic absorption was used for determining hexavalent chromium.

III. CONCLUSION

Field survey data are presented in Appendixes G-J. Laboratory results and isokinetic and emissions calculations for each sample run are presented in Appendixes K and L, respectively. Emissions calculations were done using "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA Office of Air Quality Planning and Standards, Research Triangle Park NC. This is our standard method for calculating emissions data. Equipment calibration data is presented in Appendix M.

Neither phosphoric acid nor sulfuric acid was detected in any of the three runs. Total chromium emission rates averaged .002 lb/hr. Hexavalent chromium was being emitted at an average rate of 0.001 lb/hr.

Table 1 provides operating and testing parameters for the scrubber stack during testing along with the resultant pollutant emission rates determined from these tests. TACB will use the emission results provided in Table 1 to make the final determination as to whether additional control is needed on the anodizing line exhaust.

IV. RECOMMENDATION

The AFOEHL Air Quality Function will continue to provide consultant services regarding this project as requested by HQ SA-ALC/EM.

TABLE 1
STACK EMISSIONS TEST RESULTS

PHOSPHORIC ACID

DATE	RUN #	STACK TEMP (deg F)	STACK FLOWRATE (dscfm)*	% ISOKINETIC	TOTAL CATCH (ug)**	EMISSION RATE (1b/hr)
5 JAN 89	1	73	17644	96.9	ND	*
5 JAN 89	2	74	17706	96.4	ND	-
6 JAN 89	3	64	18031	94.0	ND	•

SULFURIC ACID

DATE	RUN #	STACK TEMP (deg F)			TOTAL CATCH (ug)**	EMISSION RATE (1b/hr)
6 JAN 89	1	70	18418	92.9	ND	-
6 JAN 89	2	72	18092	93.2	NO	-
6 JAN 89	3	73	17871	94.8	ND	-

TOTAL CHROMIUM

DATE	RUN #	STACK TEMP (deg F)	STACK FLOWRATE (dscfm)*	% ISOKIMETIC	TOTAL CATCH (ug)**	EMISSION RATE (1b/hr)
9 JAN 89	i	60	19004	93.3	5.18	0.002
9 JAN 89	2	61	18895	93.9	2.12	0.001
9 JAN 89	3	60	18401	93.1	11.94	0.004
						AVG = 0.002

HEXAVALENT CHROMIUM

DATE	RUN #	STACK TEMP (deg F)	STACK FLOWRATE (dscfm)*	\$ ISOKINETIC	TOTAL CATCH (ug)**	EMISSION RATE (1b/hr)
********	*****					
10 JAN 89	1	60	17569	94.2	1.92	0.001
10 JAN 89	2	62	17228	92.3	3.61	0.001
10 JAN 89	3	62	18015	94.1	1.49	0.001
* dscfm =	dry stand	lard cubic feet p	er minute			AVG = 0.001

^{**} ug = micrograms ND = none detected

REFERENCES

- 1. "Standards of Performance for New Stationary Sources", Title 40, Part 60, Code of Federal Regulations, July 1, 1987.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for Hewlett-Packard 41
 Calculators. U.S. Environmental Protection Agency, EPA-340/1-85-018,
 Research Triangle Park, North Carolina, May 1987.

APPENDIX A
Personnel Information

1. AFOEHL Test Team

Maj James Garrison, Chief, Air Quality Function Capt Paul Scott, Consultant, Air Resources Meteorologist Capt Ronald Vaughn, Consultant, Air Quality Engineer 1Lt Charles Attebery, Consultant, Air Quality Engineer Sgt Robert Davis, Bioenvironmental Engineering Technician Sgt Harold Casey, Bioenvironmental Engineering Technician

AFOEHL/ECQ Brooks AFB TX 78235-5501

Phone: AUTOVON 240-2891 COMMERCIAL (512) 536-2891

2. Kelly AFB on-site representatives

Mr C.B. Laughlin, HQ SA-ALC/EM Mr Jerry Bingham, HQ SA-ALC/EM Mr Hyland Lee, HQ SA-ALC/MAQV Mr Miguel Juarez, HQ SA-ALC/MABPSP Mr David Mann, HQ SA-ALC/MABPSP Mr Enrique Garcia, HQ SA-ALC/MABPSP

Ms Valerie Haris, Texas Air Control Board San Antonio TX

APPENDIX B
Texas Air Control Board Rule 116.4

TEXAS REGULATION VI: CONTROL OF AIR POLLUTION BY PERMITS FOR NEW CONSTRUCTION OR MODIFICATION

(Texas Administrative Code, Title 31, Natural Resources and Conservation, Part III, Air Control Board, Chapter 116 — Control of Air Pollution by Permits for New Construction or Modification; Adopted April 21, 1971, effective June 18, 1971; Amended effective March 5, 1972; August 21, 1972; April 27, 1975; February 12, 1978; September 30, 1978; May 6, 1979; November 25, 1979; August 22, 1980; April 16, 1981; January 1, 1983; July 14, 1983; March 15, 1985; Corrected August 23, 1985; Amended effective August 28, 1985; October 21, 1985; November 25, 1985; October 2, 1986; November 5, 1986; August 20, 1987; September 24, 1987; January 27, 1988; May 4, 1988; August 30, 1988)

§116.1. Permit.

- (a) Any person who plans to construct any new facility or to engage in the modification of any existing facility which may emit air contaminants into the air of this state must obtain a permit to construct pursuant to §116.3(a) of this title (relating to Consideration for Granting Permits to Construct and Operate) or pursuant to §116.7 of this title (relating to Special Permits) or satisfy the conditions for exempt facilities pursuant to \$116.6 of this title (relating to Exempted Facilities) before any actual work is begun on the facility. If a permit to construct is issued by the board, the person in charge of the facility must apply for an operating permit pursuant to §116.3(b) of this title (relating to Consideration for Granting Permits to Consideration for Granting Permits to Construct and Operate) within 60 days after the facility has begun operation, unless this 60-day period has been extended by the executive director.
- (b) The new owner of a facility which previously has received a permit or special permit from the Texas Air Control Board (TACB) shall not be required to apply for a new permit or special permit and the change of ownership shall not be subject to the public notification requirements of this chapter, provided that within 30 days after the change of ownership the new owner notifies the TACB of the change. The notification shall include a certification of the following:
- (1) the ownership change has occurred and the new owner will comply with all

conditions and provisions of the permit or special permit and all representations made in the application for permit or special permit and any amendments thereto;

(2) there will be no change in the type of pollutants emitted; and

(3) there will be no increase in the quantity of pollutants emitted.

§116.2 Responsibility for Obtaining Permit or Exemption. The owner of the facility or operator of the facility authorized to act for the owner is responsible for complying with §116.1 of this title (relating to Permit Requirements).

§116.3. Consideration for Granting Permits to Construct and Operate.

- (a) Permit to construct. In order to be granted a permit to construct, the owner or operator of the proposed facility shall submit information to the Texas Air Control Board, which will demonstrate that all of the following are met:
- (1) The emissions from the proposed facility will comply with all rules and regulations of the Texas Air Control Board and with the intent of the Texas Clean Air Act, including protection of the health and physical property of the people. In considering the issuance of a permit for construction or modification of any facility within 3,000 feet or less of an elementary, junior high, or senior high school, the TACB shall consider any possible adverse short-term or long-term side effects that an air contaminant or nuissance odor from the facility may have on

the individuals attending these school facilities.

- (2) the proposed facility will have provisions for measuring the emission of significant air contaminants as determined by the Executive Director.
- (3) The proposed facility will utilize the best available control technology, with consideration given to the technical practicability and economic reasonableness of reducing or eliminating the emissions from the facility.
- (4) The emissions from the proposed facility will meet at least the requirements of any applicable new source performance standards promulgated by the Environmental Protection Agency pursuant to authority granted under section 111 of the Federal Clean Air Act, as amended.
- (5) The emissions from the proposed facility will meet, at least, the requirements of any applicable emission standard for hazardous air pollutants promulgated by the Environmental Protection Agency pursuant to authority granted under Section 112 of the Federal Clean Air Act as amended.
- (6) The proposed facility will achieve the performance specified in the application for a permit to construct. The applicant may be required to submit additional engineering data after a permit to construct has been issued in order to demonstrate further that the proposed facility will achieve the performance specified in the application for a permit to
- (7) All requirements of Section 129(a)(1) of the Clean Air Act Amendments of 1977

(Public Law 95-95). This provision shall not apply to new or modified facilities for which construction permits are issued after June 30, 1979.

- (8) After June 30, 1979, the owner or operator of a proposed new facility which is a major stationary source of volatile organic compound emissions or which is a facility that will undergo a major modification with respect to VOC emissions and which is to be located in any area designated as nonattainment for ozone in accordance with Section 107 of the Federal Clean Air Act shall demonstrate that the following additional requirements are met:
- (A) The proposed facility will comply with the lowest achievable emissions rate (LAER) as defined in the General Rules.
- (B) All major stationary sources owned or operated by the applicant (or by any person controlling, controlled by, or under common control with the applicant) in the state are in compliance or on a schedule for compliance with all applicable state and federal emission limitations and standards.
- (9) After June 30, 1979, the owner or operator of a proposed new facility which is a major stationary source of volatile organic compounds (VOC) or which is a facility that will undergo a major modification with respect to VOC emissions, and which is to be located in Dallas, El Paso, Harris, Nueces, or Tarrant County will provide information concerning his expected emissions to enable the executive director to determine that by the time the facility is to commence operation, total allowable emissions from existing facilities, from the proposed facility, and from new or modified facilities which are not major sources in the area will be sufficiently less than the total emissions from existing sources allowed in the area under the applicable State Implementation Plan (SIP) as promulgated by the administrator of the U.S. Environmental Protection Agency in 40 Code of Federal Regulations, Part 52, Subpart SS, prior to the application for the construction permit so as to represent reasonable further progress as defined in Chapter 101 of this title (relating to General Rules).
- (10) The owner or operator of the proposed facility which is a major stationary source of VOC emissions or will undergo a major modification and is to be located in any area designated as nonattainment for ozone in accordance with

- Section 107 of the Federal Clean Air Act for which regulations and a control strategy providing for attainment of the standard have not been adopted by the U.S. Environmental Protection Agency shall demonstrate that at the time that the facility is to commence operation, a net decrease in total allowable VOC emissions in the area has been provided, taking into account any increases in emissions resulting from operation of the proposed new facility or modification.
- (11) After June 30, 1979, the owner or operator of a proposed new facility to be located anywhere within the state that is a major stationary source of emissions of any air contaminant (other than volatile organic compounds-VOC) for which a national ambient air quality standard has been issued, or is a facility that will undergo a major modification with respect to emissions of any air contaminant (other than VOC), must meet the following additional requirements if the source's emissions would exceed a de minimis impact level as defined in §101.1 of the general rules (relating to definitions) in any area where the standard is exceeded or predicted to be exceeded.
- (A) The proposed facility will comply with the lowest achievable emissions rate (LAER) as defined in the General Rules.
- (B) All major stationary sources owned or operated by the applicant (or by any person controlling, controlled by, or under common control with the applicant) in the state are to be in compliance or on a schedule for compliance with all applicable state and federal emission limitations and standards.
- (C) By the time the facility is to commence operation, total allowable emissions from existing facilities which have more than a de minimis impact on air quality in the same area as the proposed facility, from the proposed facility, and from new or modified facilities which are not major sources but which will significantly contribute to a predicted or existing exceedance of the standard in the same area as the proposed facility will not cause the national ambient air quality standard for that contaminant to be exceeded at any location and will not significantly contribute to any existing exceedance at any location.
- (12) The owner or operator of a new facility in a designated nonattainment area which will be a major stationary source or a major modification of an existing facility for any air contaminant other

- than volatile organic compounds for which a national ambient standard has been issued must meet the following additional requirements regardless of the degree of impact of its emissions on ambient air quality if the facility is located in a designated nonattainment area:
- (A) The proposed facility will comply with the lowest achievable emissions rate (LAER) as defined in the §101.1 of this title (relating to definitions) for the nonattaining pollutants.
- (B) All major stationary sources owned or operated by the applicant (or by any person controlling, controlled by, or under common control with the applicant) in the state are to be in compliance or on a schedule for compliance with all applicable state and federal emission limitations and standards.
- (C) At the time the facility commences operation, a net decrease in total allowable emissions in the area has been provided notwithstanding any increases in emissions resulting from operation of the proposed facility or modification.
- (13) The proposed facility shall comply with the prevention of significant deterioration (PSD) of air quality regulations promulgated by the Environmental Protection Agency (EPA) in the Code of Federal Regulations at 40 Code of Federal Regulations, \$52.21 as amended August 1, 1987, and the definitions for protection of visibility promulgated at 40 Code of Federal Regulations, \$51.301, hereby incorporated by reference, except for the following paragraphs: 40 Code of Federal Regulations, \$52.21(j), concerning control technology review; 40 Code of Federal Regulations, \$52.21(1), concerning air quality models; 40 Code of Federal Regulations, \$52.21(q), concerning public notification (provided, however, that a determination to issue or not issue a permit shall be made within one year after receipt of a complete permit application so long as a contested case hearing has not been called on the application); 40 Code of Federal Regulations, \$52.21(r)(2), concerning source obligation: 40 Code of Federal Regulations, \$51.21(s), concerning environmental impact statements; 40 Code of Federal Regulations, \$52.21(u), concerning delegation of authority; 40 Code of Federal Regulations, \$52.21(w), concerning permit rescission. The term "executive director" shall replace the word "administrator" except in 40 Code

- of Federal Regulations, §52.21(b)(17), f(1)(v), (f)(3), (f)(4)(i), (g), and (i). "Administrator or executive director" shall replace "administrator" in 40 Code of Federal Regulations, \$52.21(b)(3)(iii) and "administrator and executive director" shall replace "administrator" in 40 Code of Federal Regulations, §52.21(p)(2). All estimates of ambient concentrations required under this paragraph shall be based on the applicable air quality models and modeling procedures specified in the EPA Guideline on Air Quality Models, as amended, or models and modeling procedures currently approved by EPA for use in the state program, and other specific provisions made in the state PSD state implementation plan. If the air quality impact model approved by EPA or specified in the guideline is inappropriate, the model may be modified or another model substituted on a case-by-case basis, or a generic basis for the state program, where appropriate. Such a change shall be subject to notice and opportunity for public hearing and written approval of the administrator of the EPA. Copies of 40 Code of Federal Regulations, §52.21 and 40 Code of Federal Regulations, §51,301 are available upon request from the Texas Air Control Board, 6330 U.S. Highway 290 East, Austin, Texas 78723.
- (14) In evaluating air quality impacts under paragraphs (11) or (13) of this subsection, the owner or operator of a proposed new facility or modification of an existing facility shall not take credit for reductions in impact due to dispersion techniques as defined in the Code of Federal Regulations. The relevant federal regulations are incorporated herein by reference, as follows: 40 Code of Federal Regulations, §51.100(hh)-(kk) promulgated November 7, 1986; the definitions of "owner or operator," "emission limitation and emission standards," "stack," "a stack in existence" and "reconstruction," as given under 40 Code of Federal Regulations, \$51.100(f), (z), (ff), (gg), and 40 Code of Federal Regulations, §60, respectively; 40 Code of Federal Regulations, §51.118(a), (b), and (c); and 40 Code of Federal Regulations, §51.164. Copies of these sections of the Code of Federal Regulations are available upon request from the Texas Air Control Board, 6330 U.S. Highway 290 East, Austin, Texas 78723.
- (b) Permit to operate. In order to be granted a permit to operate, the owner of the facility shall demonstrate that:

- (1) The facility is complying with the rules and regulations of the Texas Air Control Board and the intent of the Texas Clean Air Act.
- (2) The facility has been constructed and is being operated in accordance with the requirements for and conditions contained in the permit to construct.
- (3) The facility is being operated in accordance with any applicable new source performance standards promulgated by the Environmental Protection Agency pursuant to authority granted under Section 111 of the Federal Clean Air Act as amended.
- (4) The facility is being operated in accordance with any applicable National Emissions Standard for Hazardous Air Pollution promulgated by the Environmental Protection Agency pursuant to authority granted under Section 112 of the Federal Clean Air Act as amended.
- (c) Emission reductions: offset. At the time of application for a construction permit in accordance with this chapter, any applicant who has effected air contaminant emission reductions may also apply to the executive director to use such emission reductions to offset emissions expected from the source(s) for which the permit is sought provided the following conditions are met:
- (1) The emission reductions are not required by any provision of the Texas State Implementation Plan as promulgated by the administrator of the U.S. Environmental Protection Agency in Code of Federal Regulations, Title 40, Part 52, Subpart SS, nor by any other federal regulation under the Federal Clean Air Act, as amended, such as new source performance standards.
- (2) The applicant furnished documentation at the time of his permit application to substantiate his claim of emission reductions previously effected. The following information must be included in the documentation.
- (A) location and identity of the source(s) where emissions are reduced.
- (B) chemical composition of emissions reduced;
- (C) date(s) when emission reductions occurred;
- (D) amount of emission reductions expressed in rates of tons per year and in pounds per hour;
- (E) a complete description of the reduction method (i.e., source shutdown,

process or operational change, type of control device, etc.):

- (F) a certification by the applicant that the emission reductions have in fact been achieved and that the same reductions have not been used previously and will not be used subsequently to offset another source.
- (G) any other pertinent detailed description information that may be requested by the executive director.
- (d) Determination by Executive Director. The executive director may grant authority to a permit applicant to use prior emission reductions and emission reductions granted to the applicant by another entity (either public or private) in accordance with Rule .003(c) if he determines that the prior emission reductions have, in fact, occurred and, when considered with other emission reductions that may be required by the permit as well as contaminants that will be emitted by the new source, will result in compliance with Rule .002(a)(12), (13), and/or (14)(C) (whichever is applicable) in the area where the new source is to be located. Prior as well as future emission reductions to be used as offset will be made conditions for granting authority to construct the proposed new source and will be enforced.
- (e) Records. The executive director will maintain no records of emission offset credits claimed by an applicant in accordance with Rule .003(c) other than those contained in permit application and permit files. The applicant shall maintain all records necessary to substantiate claims of emission reductions and shall make such records available for inspection upon request of the executive director.
- (f) Effective date. This amended rule (Rule .003) shall be effective 30 days after the filing of certified copies in the Office of the Secretary of State.

§116.4. Special Conditions.

Permits to construct and operate special permits, and exemptions may contain general and special conditions. The holders of exemptions, construction and operating permits, and special permits shall comply with any and all such conditions or satisfy the conditions for a standard exemption as published by the executive director.

§116.5. Representations in Application for Permit or Exemption.

All representations with regard to construction plans and operation procedures in an application for a special permit, a permit to construct, or a permit to operate,

APPENDIX C
Special Condition No. 1 of Permit Exemption X-16361

(This page left blank)

SPECIAL CONDITION

X-16361

- 1. The holder of this exemption shall perform stack sampling and other testing as required to establish the actual pattern and quantities of air contaminants being emitted into the atmosphere from the tank ventilation system. The holder of this exemption is responsible for providing sampling and testing facilities and conducting the sampling and testing operation at his expense.
 - A. The Texas Air Control Board (TACB) regional office in the region where the source is located shall be contacted as soon as testing is scheduled but not less than 45 days prior to sampling to schedule a pretest meeting.

The notice shall include:

- 1. Date for pretest meeting.
- 2. Date sampling will occur.
- 3. Name of firm conducting sampling.
- 4. Type of sampling equipment to be used.
- 5. Method or procedure to be used in sampling.

The purpose of the pretest meeting is to review the necessary sampling and testing procedures, to provide the proper data forms for recording pertinent data and to review the format procedures for submitting the test reports.

A written proposed description of any deviation from sampling procedures specified in permit provision or TACB or EPA sampling procedures shall be made available to the TACB at or prior to the pretest meeting. The regional director or the director of the Quality Assurance Division shall approve or disapprove of any deviation from specified sampling procedures. Requests to waive testing for any pollutant specified in B of this provision shall be submitted to the TACB Permits Division. Test waivers and alternate/equivalent procedure proposals for NSPS testing which must have EPA approval shall be submitted to the TACB Quality Assurance Division in Austin.

- B. Air contaminants emitted from the tank ventilation system to be tested for include (but are not limited to) sodiumdichromate, phosphoric acid and sulfuric acid.
- C. Sampling shall occur within 60 days after the facilities achieve maximum production, but not later than 180 days after initial start-up of the facilities and at such other times as may be required by the Executive Director of the TACB. Requests for additional time to perform sampling shall be submitted to the regional office. Additional time to comply with the requirements of 40 CFR 60 and 40 CFR 61 cannot be granted.

SPECIAL CONDITION X-16361 Page 2

- D. Three copies of the final sampling report shall be forwarded to the TACE within 30 days after sampling is completed.

 Sampling reports shall comply with the provisions of Chapter 14 of the TACB Sampling Procedures Manual. The reports shall be distributed as follows:
 - One copy to the appropriate Texas Air Control Board regional office.
 - One copy to each appropriate local air pollution control program.
 - One copy to the Quality Assurance Division, TACB, Austin Office.

APPENDIX D
Texas Regulation II (31 TAC, Chapter 112)Control of Air Pollution From Sulfur Compounds

(This page left blank)

- (B) Example 2. (Temperature of stack gas greater than 125°F.) How many lbs/hr of H₂S can be discharged from a 200 ft. stack having a 4 ft. exit diameter (ID) and a 30 ft/sec. exit gas velocity? The temperature of the exit gases is 400°F. Emissions under §112.31 of this title (relating to Allowable Emissions-Residential, Business, or Commercial).
- (i) enter ordinate of Graph III with 400; go horizontally to intersection of a 4 ft. diameter, read on the abscissa on the scale set forth in §112.31 of this title (relating Allowable Emissions-Residential, Business, or Commercial) 36 lb/hr emission. This is permitted value for 100 ft. stack and exit velocity of 20 ft/sec;
- (ii) correct for stack height of 200 ft. This is direct ratio and becomes $\underline{200'} = 2$; 100'

The emission now becomes $36 \times 2 = 72$ lbs/hr.

(iii) correct for stack exit velocity of 30 ft/sec. This is a direct ratio and becomes

30 = 1.5; 20

The allowed emission now becomes $72 \times 1.5 = 108 \text{ lbs/hr}$.

(iv) Note: less than 30 stack heights to property line - no credit.

§112.34. Effective Date.

Sections 112.31-112.34 of this title (re-

shall be in force immediately and shall supersede the previous Regulation III of the Texas Air Control Board which became effective on February 22, 1968, with regard to hydrogen sulfide.

CONTROL OF SULFURIC ACID §112.41. Allowable Emissions.

No person may cause, suffer, allow, or permit emissions of sulfuric acid from a source or sources operated on a property or multiple sources operated on contiguous properties to exceed:

- (1) a net ground level concentration of 15 ug per cubic meter of air averaged over any 24-hour period;
- (2) a net ground level concentration of 50 ug per cubic meter of air averaged over a one-hour period of time more than once during any consecutive 24-hour period; or
- (3) One hundred ug per cubic meter of air maximum at any time.

§112.42. Calculation Methods.

- (a) Application. Determination of the net ground level concentration shall be performed in accordance with the procedures outlined in §112.33 of this title (relating to Calculation Methods) for hydrogen sulfide and this section for sulfuric
- (b) Determination of compliance with emission limits. In most cases downwind samples will suffice; however, if the sampled properties are suspected of being inlating to Control of Hydrogen Sulfide) fluenced by an upwind source of H2SO4,

then both upwind and downwind samples shall be used in determining whether the emissions from the property comply with requirements of \$112.41 of this title (relating to Allowable Emissions). Calculated maximum allowable emission rates or ground level concentrations which are obtained by the method in subsection (c) of this section below may be used in determining whether a property is in compliance with the emission limits specified.

- (c) Calculations of H₂SO₄ concentrations from stack samples and measurements. The maximum allowable H₂SO₄ emission rate which may be made from a stack on a property to comply with the emission limit set forth in §112.41 of this title (relating to Allowable Emissions) may be calculated by Sutton's equation which has been modified to consider the critical wind speed and to correspond to one-hour sample. Additional credit on stack emissions can be obtained if the distance from the stack to the property line is greater than 30 stack heights. Those properties with greater than 30 stack heights to the property line should contact the executive director to obtain the proper correction factor.
- (1) For exit stack gas for temperatures of less than 125°F. The following calculations shall be used for exit stack gas for temperatures of less than 125°F:
- (A) the H₂SO₄, ambient air level of 80 ug/M' for one hour is used;

(Equation 1)

$$Q_{a} = 5.56 \times 10^{-4} V_{s} d_{s}^{2} \frac{1}{\left[\begin{array}{c} d_{s} \\ h_{s} \end{array}\right] 1.29}$$

Where:

 $Q_s = \text{emission rate, lbs/hr.}$

V_s = stack exit velocity, ft/sec.

d, = exit stack diameter, ft.

h, = physical stack height, ft.

(B) to plot Graph IV assume a basic stack height of 100 ft. and plot

$$\begin{bmatrix} d_{\bullet} \\ 100 \end{bmatrix} 1.29$$

for various stack diameters versus stack velocity.

GRAPH IV

SULFURIC ACID MIST EXIT STACK GAS TEMPERATURE LESS THAT 125°F

- (2) For exit stack gas for temperature greater than 125°F. The following calculations shall be used for exit stack gas for temperatures greater than 125°F:
- (A) the H₂SO₄ ambient air level of 80 ug/M³ for one hour is used;

$$Q_{s} = 12.32 \text{ X } 10^{4} \text{ V}_{s} \text{ d}_{s} \left[1.5 + 0.82 \left(\frac{\Delta T}{T_{s}} \right) \text{d}_{s} \right] \text{h}_{s}$$

Where:

(Equation 2)

Q, = emission rate, lbs/hr.

V. = stack exit velocity, ft/sec.

d_s = exit stack diameter, ft.

h, = physical stack height, ft.

ΔT = temperature difference between stack gas and the outdoor atmosphere in 'Rankine.

An outdoor temperature of 90°F (550°R) is assumed in preparing dispersion graphs.

T, = stack exit temperature in Rankine.

(B) to plot Graph V, assume a basic stack height of 100 feet and an exit velocity of 20 ft/sec. Let stack gas temperature vary with stack diameter.

GRAPH V
SULFURIC ACID MIST
EXIT TEMPERATURE GREATER THAN 125°F

GRAPH I CORRECTION FACTORS STACK GAS TEMPERATURE EQUAL OR LESS THAN 125°F

- (3) Examples. The following are examples of stack emission calculations:
- (A) Example 1. (Temperature of stack gas less than 125°F.) How many lbs/hr of H₂SO₄ can be discharged from a 200 foot stack having a 4 foot exit diameter (ID) and a 30 ft/sec exit gas velocity? The temperature of the exit gases is 100°F. Solution:
- (i) the ratio of stack diameter to 100 ft. is 4/100 = 0.04;
- (ii) enter ordinate of Graph IV with 0.04; go horizontally to intersection of 30 ft/sec. velocity curve. At this intersection read on the abscissa 17 lbs/hr. This is the permitted value for a 100 foot stack;
- (iii) correct emissions for a 200 foot stack. Enter Graph I at 200 feet and 200/100 = 2. We now have $26 \times 2 = 52$ obtain correction factor of 2.3. Thus the lbs/hr. emissions become $17 \times 2.3 = 39 \text{ lbs/hr}$.
- lbs/hr of H₂SO₄ can be discharged from a 200 foot stack having a 4 foot exit diameter (ID) and a 30 ft/sec exit gas velocity? §112.43. Effective Date. The temperature of the exit gases is 400°F. Solution:
- foot stack and exit velocity of 20 ft/sec. furic acid emissions.

- (ii) Correct for stack height. Thus,
- (iii) Correct for stack exit velocity of 30 (B) Example 2. (Temperature of stack ft/sec. This is a direct ratio and becomes gas greater than 125°F.) How many 30/20 = 1.5. The emission now is 52×1.5 = 78 lbs/hr.

Sections 112.41-112.43 of this title (relating to Control of Sulfuric Acid) shall be (i) Enter ordinate of Graph V with 400; in force immediately and shall supersede go horizontally to intersection of 4 foot the previous Regulation III of the Texas diameter and read on abscissa 26 lbs/hr Air Control Board which became effective emission. This is permitted value for 100 on February 22, 1968, with regard to sulAPPENDIX E
Preliminary Field Data

(This page left blank)

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: 4 Stack diameter at ports: 4 (ft)

Distance A (ft) 2.4 (duct diameters) 0.6

Recommended number of traverse points as determined by distance A: 24

Distance B (ft) 18.5 (duct diameters) 4.6

Recommended number of traverse points as determined by distance B: 24

Number of traverse points used: 24

÷	PI	RELIMINARY SURV Stack	EY DATA SH Geometry)	IEET NO. 1
BASE Kell + AF	R	Anodizhe	11.7	
	<u> </u>	SAMPLING TEAM	ount	
4 Jan 89 SOURCE TYPE AND MAKE		DEAC		
Wet So	mbbel	TIURING SYLEV NIAME	+=3	
SOURCE NUMBER		INSIDE STACK DIAME	L	inches
RELATED CAPACITY			N/A	
DISTANCE FROM OUTSID	e of Nipple to 1 8,75			
NUMBER OF TRAVERSES	31/2	NUMBER OF POINTS	TRAVERSE	Inches
2		OCATION OF SAMPLING	G POINTS AL ON	NG TRAVERSE
POINT	PERCENT O DIAMETER	F DISTANCE	FROM	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
i				9,8
2				12,Ø
3				14,4
4				17.3
5				20.8
6				25.8
7				39.7
8				448
9				48.2
10				51.1
1)				53.5
12				55.7
			İ	}

		YEY DATA SHEET NO. 2 comperature Traverse)	
BASE, KELLY AFD BOILER NUMBER		4 JAN 88	
ANDDIZING WI	FIT SCRUBBER	UNIT	
INSIDE STACK DIAMETER STATION PRESSURE			Inches
39.505 STACK STATIC PRESSURE			In Hg
		The same of the sa	În H20
SAMPLING TEAM OF H		*	
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	a FF	STACK TEMPERATURE (OF)
	. 31	50 49	60
2_	, 33	30 32	60
3	134	25 25	60
4	, 33	20 19	60
5-	. 31	25 20	60
6	128	35 32	60
7	. A	30 36	60
8	, 20	50 45	60
9	,24	50 48	60
10	142	55 50	60
11	. 47	50 47	60
12	.43	50 47	_ 60
		AVG = 39°	
		50 47 AVG = 39°	
	AVERAGE		

	PRELIMINARY SURV (Velocity and Te			
BASE HELLY AFB		DATE	JAN 84	
HELLY AFR BOILER NUMBER AND 2 UVL W	F.T SCRUBBER U			
INSIDE STACK DIAMETER	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Inches
STATION PRESSURE 29, 245				
STACK STATIC PRESSURE		·		In Hg
SAMPLING TEAM ORHL		 -		In H20
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20		$\sqrt{V_p}$	STACK TEMPERATURE (0F)
l	./3	15	16	7/
2	.15	3	5	72
3	. 15	4	4	72
Ч	, 21	3	Ÿ	72
5	123	0	Ò	72.
6	, 23	0	0	72
フ	. 21	0	0	72
8	12	5-	3	72
9	.18	4	3	72
10	,18	10	7	72
11		9	12_	-73
12	,15	14	16	73
		AVG	12 16 = 6°	
		} 1		
	assume 2 Hz 0 =	7		
	FPS=19			
	assume % H2 U = FPS= 19 Ts = 72			
	NOZ = 0.3179			
	AVERAGE			

APPENDIX F
Hexavalent and Total Chromium Sampling Methods

(This page left blank)

METHOD DEVELOPMENT AND TESTING FOR MEASUREMENT OF SOURCE LEVELS OF HEXAVALENT AND TOTAL CHROMIUM

Daniel G. Bivins
U.S. Environmental Protection Agency
Emission Measurement Branch, MD-13
Emission Standards and Engineering Division
Research Triangle Park, North Carolina 27711

and

W.G. DeWees,
Robin Segall and
Dr. Scott Steinsberger
Entropy Environmentalists, Inc.
P.O. Box 12291
Research Triangle Park, North Carolina 27709

For Presentation at the 80th Annual Air Pollution Control Association Meeting

June 1987

87-70.4

INTRODUCTION

In 1985, a comprehensive screening study and testing program were initiated by the U.S. Environmental Protection Agency (EPA) to evaluate the levels of chromium emissions from stationary sources to determine whether chromium emissions should be regulated under the National Emission Standards for Hazardous Air Pollutants (NESHAP). This evaluation involved the determination of the emissions of total chromium and hexavalent (Cr^{+6}) chromium from stationary source categories with significant potential air emissions of chromium. Total chromium and hexavalent chromium were both measured.

At the beginning of the study, a reference method had not been proposed or promulgated for chromium. However, the Quality Assurance Division (QAD) of EPA had developed and evaluated a tentative field sampling and laboratory analytical procedure for chromium. This tentative method was designed to measure emissions that could be collected by EPA Method 5 type filters. It was determined during the screening study that the QAD train was unable to effectively collect chromium effectively from some source categories that emitted significant amounts of chromium. An impinger type train was then developed and evaluated.

Because of the need to provide accurate data on sources with low levels of chromium emissions, several sample preparation and analytical techniques were employed and evaluated. It was anticipated that distilled water in the impinger solution might not prevent conversion of the hexavalent chromium to other valence states; therefore, other solutions and different analytical techniques were investigated.

The following discussions will provide the specific information needed to develop a source specific hexavalent chromium emission measurement method. They describe: 1) the types and levels of hexavalent chromium emissions encountered, 2) selecting a sample collection technique, 3) selecting sample preparation and analytical techniques, and 4) selecting a method for specific sources.

DEFINING THE TYPES AND LEVELS OF CHROMIUM EMISSIONS

Chromium emission sources can be characterized by type and concentration level of their emissions. Both characteristics greatly influence the selection or development of a chromium method. The types and levels of chromium emissions are described below and shown in Table I.

Types of Chromium Emissions

There are two types of hexavalent chromium emissions that result from two broad processes: (1) processes that use raw materials containing naturally occurring chromium and (2) processes that use hexavalent chromium.

Processes With Naturally Occurring Chromium. Naturally occurring chromium (trivalent chromium) may be contained in process raw materials (e.g. chromite ore) or in the fuel in certain combustion sources (e.g. coal-fired boilers and incinerators). Generally the chromium emissions from the processes are particulate in nature. The trivalent chromium is converted to hexavalent chromium by:

Table I. Summary Table For Methods Selection.

						Met/Dropiet
	Filterable	Filterable	Filterable	Mist/Droplet	MIST/Uropiet	
Emission	۵	Particulate	Particulate	High High	Low	Very Low
Types	T S	Low	Very Low			
	6 100 ua Cr	(10-100 ug Cr	(=1 ug Cr	1 (+100 ug Cr	(10-100 ng Cr	
& Levels	per sample)	per samole)	per sample)	per sample)	per sample)	per semple)
	Refractory Plants				Decorative	
Fyamnle		Bollers	Bollers	Hard Chromium	Plating Plants	Industrial
Commission			Anderedoct	Plating Plants	Industrial	Cooling Towers
Sources	Chemical				Cooling Towers	
	Pignts Oraceast to add to	PRINCE NATION IN COCHENA IN BAW MATERIALS.	RAW MATERIALS.	GENERALLY, PROC	GENERALLY, PROCESSES UTILIZING HEXAVALENT CHROMIUM.	AVALENT CHROMIUM.
	GENERALLY, NA.	ONALL COCC			Impinger Train	Impinger Train
		AAR Train w/Taflon	M5 Train w/Teflon		W/Terlon Backup Filter.	Backup Filter.
		Filter(4300 F).		Impinger Train.	O. IN NEOH IN	O. 1N NAOH In
Sample	M6 Train w/Glass	or Low Blank	or Low Blank		Impingers(Cr.).	Impingersion 7.
7-11-0	Fiber Filter.	Value Glass	Value Glass	O. 1 N NBOH In	0.1 N HNO In	O. 1 N HNO In
Collect	502	Fiber Filter for	Fiber Filler for	i impingers.	Impingers (Total	Impingers (Total
tion		, 300° F.	, 300 F.	-	C 2	Cr).
	Impingers.	0.1. H O In	0.1. H o In	0.1 N NaOH Rinse.	O. 1 N NaOH Rinse	O. 1 N NaOH Rinse
	Acetone Rinse.	Impingers.	Impingers.		(Cr*8).	(Cr.º).
		Acetone Rinse.	Acetone Rinse.		O. 1 N NHO, RINSO	(Total Cr)
					(10tel Cr).	Senerate and
		Filter Digestion	Filter Digestion	•••		Concen. Cr.
	Filter Digestion	using 1/10	using 1/10		Concen.(pH 6-10)	sample using.
Sample	In NaOH-Na CO .	concentration of	concentration of		using Heat(C, 6).	Coprecipitation,
Drenar-		NaOH-Na, CO3 .	NaOH-Na CO .			Chelation/Extrac.,
Lingar	Collection of	Concentrate	Concentrate	None.	Concentrate, If	Chela./Solid
ation	Filtrate for	Filtrate to	Filtrate to	-	necessary, (pH·Z)	tion or ion Exchange
	Cr. Analysis.	1/10 Volume	1/10 Volume		Cana near	Concen.(Cr.º).
		(10 ml) at High	(10 ml) at High			Concen.(pH·2)
		рн (8-10).	pH (8-10).			using Heat(Total Cr).
Sample	ĮĎ	Diphenyloarbazide	NAA(C+0).	Olphenyloarbazide	Diphenylcerbazide	AA (Cr ⁶).
	•	Colorimetric	GFAA(Cr.º).	Colorimetric	Color. Method(Ct*)	NAA,GFAA, OF
Alialysis		Method(Cr).	ICAP(Cr. 0).	י שפוווסמוכר ז.	ICAP(Total Cr).	CAPLIOISICS.

1) high temperature, 2) long residence time, and 3) an alkaline media. Processes such as boilers and incinerators have sufficiently high temperatures; but short residence time. Based on 38 test runs at five different boiler and incinerator sources, typically less than 3 percent of the trivalent chromium converts to hexavalent chromium. Therefore, if the amount of total chromium in the ruel or raw material is known, the maximum hexavalent chromium emissions can be closely estimated. Emissions from this process contain 20 to 100 times more trivalent chromium than hexavalent chromium in the sample. In separating the hexavalent chromium from the trivalent chromium, there is a large potential for error during the sample preparation.

Processes With Hexavalent Chromium. Two major processes that use hexavalent chromium are chromium plating plants, where chromic acid is used for plating metals, and cooling tower facilities, where sodium dichromate is used as a corrosion inhibitor. The hexavalent chromium emissions from these sources are generally in the form of liquid droplets or a mist and are not readily collected by a Method 5 type filter.

Levels of Chromium

The level of the chromium emissions concentration is important in the selection of the sampling and analytical procedures. The total hexavalent chromium sample catch can be defined and categorized into three levels: 1) high - greater than 100 ug of hexavalent chromium, 2) low - between 10 ug and 100 ug hexavalent chromium and, 3) very low - approximately 1 ug of hexavalent chromium.

As will be discussed in much greater detail later, when the total sample catch of hexavalent chromium is greater than 100 ug, the sample can be easily prepared and analyzed directly for hexavalent chromium using the diphenylcarbazide colorimetric method. When the sample catch is between 10 ug and 100 ug, the sample may need to be concentrated before analysis by the same colorimetric method. When the sample catch is about 1 ug, then the sample preparation and analytical techniques must be modified significantly.

SELECTING A SAMPLE COLLECTION TECHNIQUE

The chromium screening study and methods development program revealed that two sample trains are required: 1) filter sample trains and 2) impinger sample trains. Modifications are made to each type of train to account for the chromium catch levels. The application of each of these trains to chromium emission types and levels is described in this section. Specific details for filter and impinger sample trains are presented in a later section, "Description of Sampling Techniques, Sample Preparation, and Analytical Methods."

Filter Sample Trains

Front half filter trains are found to be acceptable at sources where the emissions are in the form of dry solid particulates, not droplets or mists. Two types of filters are used, one for sources with high hexavalent chromium levels and the other for sources with low and very low chromium levels.

High Level Hexavalent Chromium. The tentative field sampling procedure, 2 works well for the sources with high chromium levels, filterable emissions. These

included refractory plants, electric arc furnaces, and chrome chemical plants. A standard 3-inch fiberglass front filter was used for tests at these sources. The small hexavalent chromium filter blank values gave insignificant errors, when compared to the large total hexavalent sample catches at these plants. Results from 13 sample runs at 11 different process streams show that less than 1 percent of the hexavalent sample catch was in the impingers. Therefore, the impinger catches are considered negligible and should not be used in calculating emission rates.

Low and Very Low Level Hexavalent Chromium. The tentative field sampling procedure also works well for low hexavalent chromium concentration filterable sources, except that glass fiber filters are not recommended. Blank values of about 0.3 ug hexavalent chromium cause significant errors when the total front-half catches are as low as 1 ug. Most boilers and incinerators have low to very low filterable chromium emission levels. At sources where the stack temperatures are less than 300°F, Teflon filters are recommended because they do not contain chromium. If the stack temperatures exceed 300°F, glass fiber filters may be used if 10 filters from the same lot are extracted and analyzed for hexavalent chromium, and the average filter blank value is less than 10 percent of the expected hexavalent chromium catch.

Impinger Sample Trains

Filter trains are unsuitable for sampling emissions of hexavalent chromium in the form of a mist or droplets. In these cases, better results are obtained using an impinger train. Different impinger reagents and/or sample preparation techniques are required for sources with different chromium levels, corresponding to the analytical techniques.

High Level Hexavalent Chromium. The results from one of the first tests conducted at a hard chromium plater, where sample catches exceeded 100 mg, showed that hexavalent chromium was not recovered completely from the filter and frit assembly. Also, the results from 12 paired test runs performed on 2 different locations in another chrome plating facility showed that about 10-25 percent of the hexavalent chromium was not recovered when filter train results were compared with results for an impinger train. This prompted the decision to use an impinger train to sample all such sources, no matter what the level of hexavalent emissions concentration. In addition, 6 paired impinger train runs were conducted to compare using 0.1 N sodium hydroxide (NaOH) and distilled water as impinger reagents. The results show that significant amounts of hexavalent chromium are unaccounted for when only distilled water is used in the impingers during testing. Therefore, 0.1 N NaOH is used as the impinger reagent to prevent potential hexavalent chromium conversion to another valence state.

Low and Very Low Level Hexavalent Chromium. Impinger trains are also employed at sources where the hexavalent chromium sample catch is low (10 to 100 ug) or very low (around 1 ug), such as industrial cooling towers.

A method development and evaluation test was performed at the beginning of the NESHAP study for industrial cooling towers.⁴ This test shows that approximately half the quantity of each ion present (Li, Br, Ca, and Mg) passes through the front-half filter. Although chromium was not measured at this test, it was assumed to behave like the other ions. Following this, impinger trains were

55

included refractory plants, electric arc furnaces, and chrome chemical plants. A standard 3-inch fiberglass front filter was used for tests at these sources. The small hexavalent chromium filter blank values gave insignificant errors, when compared to the large total hexavalent sample catches at these plants. Results from 13 sample runs at 11 different process streams show that less than 1 percent of the hexavalent sample catch was in the impingers. Therefore, the impinger catches are considered negligible and should not be used in calculating emission rates.

Low and Very Low Level Hexavalent Chromium. The tentative field sampling procedure also works well for low hexavalent chromium concentration filterable sources, except that glass fiber filters are not recommended. Blank values of about 0.3 ug hexavalent chromium cause significant errors when the total fronthalf catches are as low as 1 ug. Most boilers and incinerators have low to very low filterable chromium emission levels. At sources where the stack temperatures are less than 300°F, Teflon filters are recommended because they do not contain chromium. If the stack temperatures exceed 300°F, glass fiber filters may be used if 10 filters from the same lot are extracted and analyzed for hexavalent chromium, and the average filter blank value is less than 10 percent of the expected hexavalent chromium catch.

Impinger Sample Trains

Filter trains are unsuitable for sampling emissions of hexavalent chromium in the form of a mist or droplets. In these cases, better results are obtained using an impinger train. Different impinger reagents and/or sample preparation techniques are required for sources with different chromium levels, corresponding to the analytical techniques.

High Level Hexavalent Chromium. The results from one of the first tests conducted at a hard chromium plater, where sample catches exceeded 100 mg, showed that hexavalent chromium was not recovered completely from the filter and frit assembly. Also, the results from 12 paired test runs performed on 2 different locations in another chrome plating facility showed that about 10-25 percent of the hexavalent chromium was not recovered when filter train results were compared with results for an impinger train. This prompted the decision to use an impinger train to sample all such sources, no matter what the level of hexavalent emissions concentration. In addition, 6 paired impinger train runs were conducted to compare using 0.1 N sodium hydroxide (NaOH) and distilled water as impinger reagents. The results show that significant amounts of hexavalent chromium are unaccounted for when only distilled water is used in the impingers during testing. Therefore, 0.1 N NaOH is used as the impinger reagent to prevent potential hexavalent chromium conversion to another valence state.

Low and Very Low Level Hexavalent Chromium. Impinger trains are also employed at sources where the hexavalent chromium sample catch is low (10 to 100 ug) or very low (around 1 ug), such as industrial cooling towers.

A method development and evaluation test was performed at the beginning of the NESHAP study for industrial cooling towers.⁴ This test shows that approximately half the quantity of each ion present (Li, Br, Ca, and Mg) passes through the front-half filter. Although chromium was not measured at this test, it was assumed to behave like the other ions. Following this, impinger trains were

used to sample all other cooling towers tested during the study. A backup filter was employed to ensure collection of emissions passing through the impingers.

All cooling tower testing has used deionized or distilled water as the impinger reagent. Measurements of total chromium, in conjunction with the total-to-hexavalent chromium ratio measured for cooling water samples, are used to calculate hexavalent chromium emissions. The impinger reagent used depends on whether methods specific for hexavalent chromium or total chromium are selected for sample preparation and analysis. Thus, 0.1 N NaOH is used when the sample will be analyzed for hexavalent chromium and 0.1 N nitric acid (HNO3) is used when the sample will be analyzed for total chromium. Sample preparation and analysis options are discussed in detail in the next section. Rinses are done with the same solution as is in the impingers. Approximately 500 ml of the distilled water used to make the impinger reagent should be set aside as a sample blank, and then subjected to the same preparation and analysis techniques as the sample. The reagent blank should contain less than 0.5 ug/liter of hexavalent chromium.

SELECTING A SAMPLE PREPARATION AND ANALYTICAL TECHNIQUE

The choice of a sample preparation and analysis technique also depends on the types and levels of chromium emissions. The subsections which follow describe which preparation and analytical techniques are used for filterable or nonfilterable sources (requiring impinger trains) at each of the three chromium levels. Detailed explanations of each sample preparation and each analytical technique are offered in the section "Description of Sampling Techniques, Sample Preparation, and Analytical Methods."

Filterable Sample Preparation and Analysis

High Hexavalent Chromium Levels. Sample preparation for sources with high chromium levels requires no modification to procedures in the EPA Draft Method for hexavalent chromium.² The diphenylcarbazide colorimetric method is used for analysis.

Low Hexavalent Chromium Levels. Sample prepration for sources with low chromium levels requires a modification to the extraction technique in the draft method. One tenth the concentration of digestion solution is used in the extraction of the hexavalent chromium; then the extraction filtrate is concentrated to 10 ml. The diphenylcarbazide colorimetric method is used for analysis.

Very Low Hexavalent Chromium Levels. Sources with very low chromium levels require the same extraction technique modification as the low level sources, but the filtrate is analyzed by a technique other than the diphenylcarbazide colorimetric method. Other techniques include neutron activation analysis (NAA), graphite furnace atomic absorption (GFAA) or inductively coupled argon plasmography (ICAP). These have not been used for very low filterable sources, but they have been used for the higher sample concentration sources and the results compare favorably with the colorimetric technique.

Impinger Train Sample Preparation and Analysis

<u>High Chromium Levels</u>. Impinger samples containing higher levels of hexavalent chromium may be analyzed directly by the diphenylcarbazide colorimetric method without concentrating the impinger liquid.

Low Concentration Levels. Impinger samples may be analyzed directly for low levels of hexavalent chromium using the diphenylcarbazide colorimetric method provided they are first concentrated. The 0.1 N NaOH used as the impinger reagent in this situation provides the high pH (8-10) needed during heating to prevent conversion of the hexavalent chromium to another state. Alternatively, samples may be analyzed for total chromium using NAA, GFAA, or ICAP. The impinger reagent is 0.1 N HNO3 and the samples are concentrated, if necessary, at a low pH (<2) using heat.

Very Low Chromium Levels. Very low level chromium impinger samples cannot be analyzed directly for hexavalent chromium using the colorimetric method even after concentration. Therefore, alternative procedures are used to separate the hexavalent chromium from the sample matrix, concentrate it, and convert it to trivalent chromium so it can be analyzed using sensitive atomic absorption (AA) techniques. Four recommended alternative procedures are coprecipitation, chelation with extraction, chelation with solid phase concentration, and ion exchange concentration. Impinger samples at the very low chromium levels can also be analyzed for total chromium using NAA, GFAA, or ICAP. This requires concentrating the samples by heating at a low pH (<2) which is provided by HNO3 in the impinger solution.

SELECTION OF METHODS FOR SPECIFIC SOURCE CATEGORIES

Chromium Chemical Plants, Electric Arc Furnaces, and Refractory Plants

The emissions from chromium chemical plants, electric arc furnaces, and refractory plants are dry particulate matter with high levels of hexavalent chromium. Therefore, a filter train with glass fiber filters is used for sample collection. The EPA Draft Method² is used for sample preparation and the diphenylcarbazide colorimetric method is used for analysis.

Boilers and Incinerators

Boiler and incinerator emissions are dry particulate matter with low levels of hexavalent chromium. A filter train is suggested for sampling. Teflon filters should be used low temperature sources ($<300^{\circ}F$); low blank value glass fiber filters should be used at high temperature sources ($>300^{\circ}F$). For sample preparation, the draft method is modified to use one tenth the concentration of digestion solution in the extraction and to concentrate the sample filtrate to one tenth of original volume. The diphenylcarbazide colorimetric method is used for analysis.

Hard Chromium Plating Facilities

Emissions from chromium platers are characteristically a mist or droplets containing high levels of hexavalent chromium. An impinger train with 0.1 N NaOH in the impingers is recommended for sample collection. The diphenyl-carbazide colorimetric method is used for analysis.

87-70.4

Industrial Cooling Towers

Emissions from cooling towers are typically in the form of a mist or droplets containing very low to low chromium levels. An impinger train with a backup filter is used to sample these emissions. If direct measurement of hexavalent chromium is required, the impingers should contain 0.1 N NaOH. Four techniques, discussed in the section "Analysis of Impinger Train Samples with Very Low Levels of Hexavalent Chromium," can be used to separate hexavalent chromium from the sample matrix so it can be measured using AA.

For an inferred hexavalent chromium measurement, 0.1 N HNO3 is used in the impingers and the total chromium content of the sample is measured using NAA, GFAA, or ICAP, following concentration. This value is used with the hexavalent-to-total chromium ratio in the cooling water to calculate the hexavalent chromium emission rate.

Other Source Categories

There may be sources with unique emissions and chromium levels, but generally the method selection process, described above may be followed to develop a sampling technique or method suitable for the particular source.

DESCRIPTION OF SAMPLING TECHNIQUES, SAMPLE PREPARATION, AND ANALYTICAL METHODS

The following sections describe the sampling techniques, sample preparation, and analytical methods used to sample at chromium sources. Alternative analytical techniques are described, potential sampling problems are noted, and special field sampling problems are described.

Sampling Techniques

EPA Method 5. Figure 1 shows the EPA Method 5 sampling apparatus, as described in the Federal Register. It is the particulate matter sampling system for the dry filterable emissions. Testing is conducted by traversing the cross-sectional area of the stack or duct and regulating the sample flow rate relative to the flue gas flow rate, as measured by the pitot tube attached to the sample probe. A sampling train consisting of a heated, glass-lined probe, a heated glass fiber filter (or Teflon filter when necessary), and a series of Greenburg-Smith impingers is employed. Prior to testing, the nozzle, probe, and filter holder halves should be thoroughly rinsed with 0.1 N HNO3 followed by distilled water to remove any residual chromium. Distilled water is used in the impingers and an acetone rinse of the nozzle, probe, and filter holder is made at the end of each test. The collected sample is digested and analyzed colorimetrically or by another appropriate technique.

Heated Thermometer Temperature Imhester Priot tub 1:30 mind Probe Thermoceuple (behind) Stack Well 100 00 (00) Silica Ge Flow Control Calibrated orfice ◐ Inclined Menometer 0 Inclined Manameter

Figure 1. EPA Method 5 Sampling Train.

Glass, Teflon, or other nonchromium containing probe liners are used. Stainless steel and other chromium containing probe liners must not be used. Any hexavalent chromium contamination from the small surface area of the stainless steel nozzle is negligible, based on six test runs at two municipal incinerators. The total amount of hexavalent chromium in each sample was less than the detectable limit of the colorimetric technique.

Impinger Sampling Train Method. Figure 2 shows the impinger train that is used on wet nonfilterable emissions. The filter and filter holder portions are removed, and the testing is conducted as described in the previous section. The impinger reagent is chosen according to the analytical technique, as described in the section "Selecting a Sample Collection Technique." The rinse for the impingers, nozzle, and probe following sampling should correspond to the impinger reagent. Prior to each test, the nozzle, probe, and impingers should be rinsed with 0.1 N HNO3 followed by distilled water to remove any residual chromium.

Impinger Sampling Train Method With Backup Filter. Figure 3 shows an impinger sampling train similar to Figure 2, except it includes a Teflon backup filter placed between the third and fourth impingers. With the exception of cooling towers, where a propeller anemometer is used in place of the pitot tube to

Impinger Train with Backup Filter.

Figure 3.

Figure 2. Impinger Train.

measure the stack gas velocity, sampling is conducted as described in section "EPA Method 5." The nozzle, probe, and impingers are rinsed prior to each test with 0.1 N HNO3 followed by distilled water to remove any residual chromium. When impinger samples will be analyzed for total chromium, the impinger reagent should be 0.1 N HNO3 with a corresponding final rinse of impingers, nozzle, and probe. When impinger samples will be analyzed for hexavalent chromium, the impinger reagent should be 0.1 N NaOH with a corresponding final rinse. This may be followed by a separate 0.1 N HNO3 rinse to recover trivalent chromium, if a total chromium analysis is desired in addition to the hexavalent chromium analysis.

Sample Preparation

Sample Preparation for Direct Analysis of Particulate Filter Samples with High Levels of Hexavalent Chromium Using Colorimetric Method. Particulate samples collected using the EPA Method 5 sampling train are analyzed for hexavalent chromium using the "EPA Draft Method - Determination of Hexavalent Chromium Emissions from Stationary Sources" by digesting in an alkaline solution and analyzed with the diphenylcarbazide colorimetric method. The minimum quantifiable level is 10 up per sample. To prevent the possibility of sample deterioration. all samples should be protected from extreme heat, kept dry, and analyzed within one month of collection. Sample preparation involves digestion and filtration. The acetone probe rinse is evaporated to dryness in a beaker, the filter is cut into small pieces and added to the dry probe rinse, and 40 ml of the digestion solution (20 g of NaOH and 30 g of anhydrous Na₂CO₃ in 1 liter of water) is added. Using a hot plate, this solution is heated to near boiling with constant stirring for 30 minutes, but not taken to dryness. The sample is then filtered with water through a vacuum filter unit which accomodates a 47-mm diameter. 3.0-um pore size Teflon filter. The filtrate, which contains the hexavalent chromium. is transferred to a 100-ml volumetric flask and brought to volume. The residue on the filter contains the trivalent chromium. Trivalent chromium can be soluble, although none was found in any of the particulate sample filtrates.

Sample Preparation for Direct Analysis of Particulate Filter Samples with Low Levels of Hexavalent Chromium Using Colorimetric Method. The particulate matter samples are prepared in a manner similar to that described above. The major difference is that the filtrate is concentrated using heat to a final volume of 10 ml. The minimum quantifiable limit using this preparation technique and the colorimatric analytical technique is 1 ug of hexavalent chromium. In proportion to the change in final volume, the digestion solution used should be 10 times less concentrated. The filtrate is concentrated on a hot plate to less than 10 ml and then diluted to 10 ml. If the sample contains just less than 1 ug of hexavalent chromium, the volume of the filtrate may be reduced to less than 10 ml and then accurately determined.

Sample Preparation for Analysis of Particulate Filter Samples with Very Low Levels of Hexavalent Chromium Using a Total Chromium Method. The particulate samples are prepared in the same manner as those with low levels of hexavalent chromium. The minimum quantifiable limit is determined by both the final volume of the filtrate and the detection limit of the total chromium analytical method selected. In using this approach, it is assumed that all chromium in

the filtrate is in the hexavalent state. If any soluble trivalent chromium is present in the filtrate, then the results will be biased high by that amount.

Sample Preparation for Analysis of Impinger Train Samples with High Levels of Hexavalent Chromium Using Colorimetric Method. When the sample concentration is expected to exceed 0.3 ug of hexavalent chromium per ml of sample, then the sample may be analyzed using the diphenycarbazide colorimetric method with no sample preparation other than determining the exact sample volume.

Sample Preparation for Analysis of Impinger Train Samples with Low Levels of Hexavalent Chromium Using Colorimetric Method. When the sample concentration is expected to be less than 0.3 ug of hexavalent chromium per ml of sample, then the sample must be concentrated to a volume such that this expected level is exceeded. To insure that there is no conversion of the hexavalent chromium, the concentration step is performed at a high pH (8-10). The 0.1 N NaOH in the impinger reagent will generally provide this pH. The exact final volume of the sample must be determined prior to analysis by the colorimetric method.

Sample Preparation for Analysis of Impinger Train Samples with Very Low Levels of Hexavalent Chromium Using Total Chromium Methods. If the sample concentration is expected to be less than 0.3 ug of hexavalent chromium per ml of sample, even after the sample is concentrated to 10 ml, then a total chromium method must be used for analysis to provide a quantifiable value. Sample preparation procedures are specific to the analytical method and are described below.

Sample Analyses

Direct Analysis of Hexavalent Chromium Using Colorimetric Method. Preparation of samples containing different levels of chromium for the diphenylcarbazide colorimetric method has been previously described. The diphenylcarbazide analysis for hexavalent chromium involves four elements: (1) color development and measurement, (2) a check for matrix effects on the Cr^{+o} results, (3) calibration of the spectrophotometer, and (4) calculation of the results. For color development and measurement, the sample or an aliquot is transferred to appropriately sized volumetric glassware and the pH is adjusted to 2 with 10 percent sulfuric acid (H₂SO₄). Diphenylcarbazide solution (250 mg of 1, 5 diphenylcarbazide in 50 ml of acetone) is added at 0.02 ml per ml of final volume and the solution is diluted to an appropriate final volume. Ten minutes is allowed for color development. The sample absorbance is read at the optimum wavelength (540 nm) and the reagent blank absorbance reading is subtracted. At least one sample should be checked for matrix effects using the method of additions.

To calibrate the spectrophotometer, it is first confirmed that 540 nm is the optimum wavelength. A calibration factor (K_C) is calculated from the absorbance measurements made on the calibration standards: 0.0, 1.0, 2.0, 5.0, 10.0, 15.0, and 20 mls of potassium dichromate standard solution (5 mg/liter Cr⁺⁶) is diluted to 100 ml. The absorbance value obtained for each standard is multiplied by K_C (least squares slope) to determine the distance each calibration point lies from the calibration line. To maintain quality control, they should not deviate by more than 7 percent for five of the six standards. The hexavalent chromium concentration of the sample is calculated by multiplying the absorbance of the sample by K_C and any dilution factor.

Analysis of Chromium Using Total Chromium Methods. Neutron activation analysis. graphite furnace atomic absorption, and inductively coupled argon plasmography are the three methods that have been found to have sufficiently low detection limits and suitable sample preparation requirements for the purposes of analyzing for total chromium emission samples from low level sources for total chromium (approximately 1 ug chromium or less per sample). NAA is performed commercially by two or three laboratories across the nation. For NAA, the sample, either a filter. a filter in impinger liquid, or impinger liquid alone must be less than 30 ml (and preferably approximately 2 ml) in volume and be accurately weighed before submission to the NAA facility. NAA involves irradiation of the sample by neutrons followed by measurement of the x or gamma-rays given off later by the sample. Results are expressed in total micrograms of chromium per sample. In GFAA. a liquid sample in a microliter quantity is injected into a graphite tube inside a minifurnace, where it is thermally atomized at a high temperature. A detector measures the absorbance of radiation from a special source made from the element of interest which is directed at the atomized sample. GFAA measurements are expressed as a concentration (i.e. ug of the element per ml of sample). For ICAP, a liquid sample is introduced into a quartz tube where argon plasma acts as an excitation source. Excitation of the elements in the sample results in emission spectra which are detected with photomultiplier tubes set at wavelengths for specific elements. ICAP results are also expressed as a concentration (i.e. uq per ml).

Alternative Sample Preparation and Analytical Techniques for Direct Measurement of Very Low Levels of Hexavalent Chromium in Impinger Train Samples. Analysis of very low levels of hexavalent chromium (less than I ug per sample) in impinger train samples cannot be accomplished using the colorimetric method because the chromium concentration of these samples is below the method's detection limit, even after concentration to remove excess water. Several alternative procedures are available for determining very low levels of hexavalent chromium. These procedures specifically separate the hexavalent chromium from the sample matrix, concentrate the hexavalent chromium, and quantitate it after conversion to trivalent chromium using sensitive atomic absorption techniques. Four of the procedures, coprecipitation, chelation with extraction, chelation with solid phase concentration, and ion exchange concentration are discussed below.

The coprecipitation method separates hexavalent chromium from the impinger sample by coprecipitation of lead chromate with lead sulfate in an acetic acid solution. After separating of the precipitate by centrifuging, the supernatant, containing trivalent chromium, is removed. The precipitate is washed to remove any occluded trivalent chromium, and then solubilized in nitric acid. The nitric acid solution, now containing the hexavalent chromium in the trivalent state, is analyzed by flame or furnace atomic absorption. This coprecipitation method can be used for impinger samples containing more than 2.5 ug of hexavalent chromium.

The chelation with extraction procedure and the chelation with solid phase concentration procedure are both based on chelation of hexavalent chromium with ammonium pyrrolidine dithiocarbamate (APDC). In the extraction procedure the hexavalent chromium-APDC complex is extracted from the aqueous sample using methyl isobutyl ketone. The extract is analyzed directly by flame atomic absorption. The chelation with extration procedure can be used for impinger samples containing 0.5 to 12 ug of hexavalent chromium.

In the solid phase extraction procedure the aqueous solution containing the hexavalent chromium-APDC complex is filtered through a cartridge containing C-18 bonded silica gel. The hexavalent chromium-APDC complex is retained on the cartridge and later eluted off the cartridge with acetone. The acetone is then evaporated and the chromium complex is solubilized with nitric acid prior to quantitation by furnace atomic absorption. The chelation with solid phase concentration procedure can be used on impinger samples containing more than 0.1 ug of hexavalent chromium.

The ion exchange concentration procedure involves passing the impinger sample through an anion-exchange resin bed. The hexavalent chromium is retained on the resin along with other anions present in the impinger sample. Soluble trivalent chromium is cationic and not retained on the anion-exchange resin. The hexavalent chromium is reduced in-situ to trivalent chromium with an acidic ferrous solution and eluted from the resin with the same solution. The chromium containing solution is analyzed directly by flame atomic absorption. The ion exchange concentration procedure can be used on impinger samples containing more than 0.5 ug of hexavalent chromium.

SUMMARY

In brief, the development or selection of a source specific method for chromium involves several considerations. First, it should be determined whether the source category is one of those previously studied by EPA which should have a documented sampling and analytical technique that would provide a sound basis for method selection. Source categories previously tested for chromium emissions include refractory plants, electric arc furnaces, chromium chemical plants, boilers, incinerators, hard and decorative chromium plating plants, and industrial cooling towers. If the source to be tested does not fit into one of these categories, it can be categorized for method selection purposes by determining the type and concentration level(s) of the chromium emissions. Specifically, it is necessary to know if the emissions are in the form of a filterable particulate or a mist/droplets, and the approximate range of the chromium levels which will be caught in the emission sample(s): high (>100 q Cr), low (10-100 g Cr), and very low (I g Cr). Finally, it is important to determine whether the end use of the data will require measurements of total and/or hexavalent chromium. Then, by using Table I of this paper in conjunction with the details in the text, a suitable combination of a sample collection technique and sample preparation and analytical techniques can be selected.

REFERENCES

- 1. Cox, X. B., R. L. Linton, and F. E. Butler, "Determination of Chromium Specialization in Environmental Particles; Multitechnique Study of Ferrochrome Smelter Dust," ES&T. April 1985.
- 2. EPA Draft Method Determination of Hexavalent Chromium Emissions from Stationary Sources, Dec. 13, 1984.
- 3. Test Report, U.S. EPA, Office of Air Quality Planning and Standards, EMB Report 86-CEP-1, March 1986, p. 3-23.
- 4. Drift Methods Study, Method Development and Evaluation Report, Munters Corporation, Fort Myers, Florida, U.S. EPA, Office of Air Quality and Planning and Standards, EMB Report 85-CCT-1, October 1986, p. 3-8.
- 5. 40 CFR 60, Appendix A, Reference Methods 2,3, and 5, March 23, 1978.
- 6. Test Report, U.S. EPA, Office of Air Quality Planning and Standards, EMB Report 85-CHM-8, p. 2-6.
- 7. Test report, U.S. EPA, Office of Air Qualtiy Planning and Standards, EMB Report 85-CHM-9, p. 2-6.
- 8. EPA Draft Method Determination of Chromium Emissions from Cooling Towers, Jan. 23, 1987.

Method ____ - Determination of Hexavalent Chromium

Emissions from Decorative and Hard Chrome Electroplating

1. Applicability and Principle

- 1.1 Applicability. This method applies to the determination of hexavalent chromium (Cr^{+6}) in emissions from decorative and hard chrome electroplating operations.
- 1.2 Principle. Emissions are collected from the source by use of Method 5 (Appendix A, 40 CFR Part 60), with the filter omitted. The first and second impingers are charged with 0.1N sodium hydroxide. The collected samples remain in an alkaline solution until analysis, and are analyzed for Cr⁺⁶ by the diphenylcarbazide colorimetric method.

2. Range, Sensitivity, Precision, and Interferences

- 2.1 Range. A straight line response curve can be obtained in the range 5 μg Cr⁺⁶/100 ml to 100 μg Cr⁺⁶/100 ml. For a minimum analytical accuracy of ± 10 percent, the lower limit of the range is 10 μg /100 ml. The upper limit can be extended by appropriate dilution.
- 2.2 Sensitivity. A minimum detection limit of 1 μg Cr⁺⁶/100 ml has been observed.
 - 2.3 Precision. To be determined.

2.4 Interference. Molybdenum, mercury and vanadium react with diphenylcarbazide to form a color; however, approximately 20 mg of these

elements can be present in a sample without creating a problem. Iron produces a yellow color, but this effect is not measured photometrically at 540 nm.

3. Apparatus

- 3.1 Sampling Train. Same as Method 5, Section 2.1, but omit filter.
- 3.2 Sample Recovery. Same as Method 5, Section 2.2, but use 0.1N NaOH in place of acetone.
 - 3.3 Analysis. The following equipment is needed.
 - 3.3.1 Beakers. Borosilicate, 250-ml, with watchglass covers.
 - 3.3.2 Volumetric Flasks. 100-ml and other appropriate volumes.
 - 3.3.3 Pipettes. Assorted sizes, as needed.
 - 3.3.4 Spectrophotometer. To measure absorbance at 540 nm.

4. Reagents

Unless otherwise indicated, all reagents shall conform to the specifications established by the Committee on Analytical Reagents of the American Chemical Society. Where such specifications are not available, use the best available grade.

- 4.1 Sampling.
 - 4.1.1 O.1N NaOH.
 - 4.2 Sample Recovery.
 - 4.2.2 0.1N NaOH.
 - 4.3 Analysis. The following reagents are required.
- 4.3.1 Water. Deionized distilled, meeting American Society for Testing and Materials (ASTM) specifications for type 2 reagent ASTM Test Method D 1193-77 (incorporated by reference see § 61.18).

- 4.3.2 Potassium Dichromate Stock Solution. Dissolve 141.4 mg of analytical reagent grade $K_2Cr_2O_7$ in water, and dilute to 1 liter (1 ml = 50 μ g Cr^{+6}).
- 4.3.3 Potassium Dichromate Standard Solution. Dilute 10.00 ml $K_2Cr_2O_7$ stock solution to 100 ml (1 ml = 5 μ g Cr^{+6}) with water.
- 4.3.5 Sulfuric Acid, 10 Percent (v/v). Dilute 10 ml H₂SO₄ to 100 ml in water.
- 4.3.6 Diphenylcarbazide Solution. Dissolve 250 mg of 1, 5-diphenylcarbizide in 50 ml acetone. Store in a brown bottle. Discard when the solution becomes discolored.

5. Procedure

- 5.1 Sampling. Same as Method 5, Section 4.1, except omit the filter and filter holder, and place 100 ml of 0.1N NaOH in each of the first two impingers.
- 5.2 Sample Recovery. Measure the volume and place all liquid in the first, second, and third impingers in a labelled sample container (Container Number 1). Use 200 ml of 0.1N NaOH to rinse the probe, three impingers, and connecting glassware. Place this wash in the same container. Place the silica gel from the fourth impinger in Container Number 3.
- 5.3 Preservation. Analyze all samples within _______ of collection.
- 5.4 Reagent Blank Preparation. Place 400 ml of 0.1N NaOH in a labelled sample container (Container Number 2).
- 5.5 Silica Gel Weighing. Weigh the spent silica gel (Container Number 3) or silica gel plus impinger to the nearest 0.5 g using a balance. This step may be conducted in the field.

- 5.6 Analysis.
- 5.6.1 Color Development and Measurement. After stirring the sample in Container Number 1, transfer a 50-ml-or smaller measured aliquot to a 100 ml volumetric flask and add sufficient water to bring the volume to approximately 80 ml. Adjust the pH to 2 ± 0.5 with 10 percent H₂SO₄, add 2.0 ml of diphenylcarbazide solution, and dilute to volume with water. Allow the solution to stand about 10 minutes for color development. For each set of samples analyzed, treat an identical aliquot of reagent blank solution from Container Number 2 in the same way. Transfer a portion of the sample to a 1-cm absorption cell, and measure the absorbance at the optimum wavelength (Section 6.2.1). Measure and subtract the reagent blank absorbance reading, if any, to obtain a net reading. If the absorbance of the sample exceeds the absorbance of the 100 μg Cr⁺⁶ standard as determined in Section 6.2.2, dilute the sample and the reagent blank with equal volumes of water.
- 5.6.2 Check for Matrix Effects on the Cr⁺⁶ Results. Since the analysis for Cr⁺⁶ by colorimetry is sensitive to the chemical composition of the sample (matrix effects), the analyst shall check at least one sample from each source using the method of additions as follows:

Obtain two equal volume aliquots of the same sample solution. The aliquots should each contain between 30 and 50 μg of Cr^{+6} (less is acceptable if not possible). Spike one of the aliquots with an aliquot of standard solution that contains between 30 and 50 μg of Cr^{+6} . Now treat both the spiked and unspiked sample aliquots as described in Section 5.6.1.

Next, calculate the Cr^{+6} mass C_s , in μg in the aliquot of the unspiked sample solution by using the following equation:

$$C_S = C_a \frac{A_S}{A_t - A_S}$$
 Eq. — -1

where:

 $C_a = Cr^{+6}$ in the standard solution, μg .

As = Absorbance of the unspiked sample solution.

 A_t = Absorbance of the spiked sample solution.

Volume corrections will not be required since the solutions as analyzed have been made to the same final volume. If the results of the method of additions procedure used on the single source sample do not agree to within 10 percent of the value obtained by the routine spectrophotometric analysis, then reanalyze all samples from the source using this method of additions procedure.

6. Calibration

- 6.1 Sampling Train. Perform all of the calibrations described in Method 5, Section 5.
 - 6.2 Spectrophotometer Calibration.
- 6.2.1 Optimum Wavelength Determination. Calibrate the wavelength scale of the spectrophotometer every 6 months. The calibration may be accomplished by using an energy source with an intense line emission such as a mercury lamp, or by using a series of glass filters spanning the measuring range of the spectrophotometer. Calibration materials are available commercially and from the National Bureau of Standards. Specific details on the use of such materials are normally supplied by the vendor; general information about calibration techniques can be obtained from

general reference books on analytical chemistry. The wavelength scale of the spectrophotometer shall read correctly within ±5 nm at all calibration points; otherwise, repair and recalibrate the spectrophotometer. Once the wavelength scale of the spectrophotometer is in proper calibration, use 540 nm as the optimum wavelength for the measurement of the absorbance of the standards and samples.

Alternatively, a scanning procedure may be employed to determine the proper measuring wavelength. If the instrument is a double-beam spectrophotometer, scan the spectrum between 530 and 550 nm using the 50 µg Cr+6 standard solution (Section 4.3.4) in the sample cell and a blank solution in the reference cell. If a peak does not occur, the spectrophotometer is malfunctioning. When a peak is obtained within the 530 to 550 nm range, record and use the wavelength at which this peak occurs as the optimum wavelength for the measurement of absorbance of both the standards and the samples. For a single-beam spectrophotometer, follow the scanning procedure described above, except scan the blank and standard solutions separately. For this instrument, the optimum wavelength is the wavelength at which the maximum difference in absorbance between the standard and the blank occurs.

6.2.2 Spectrophotometer Calibration. Alternative calibration procedures are allowed, provided acceptable accuracy and precision can be demonstrated. Add 0.0 ml, 1 ml, 2 ml, 5 ml, 10ml, 15 ml, and 20 ml of the working standard solution (1 ml = 5 μ g Cr⁺⁶) to a series of seven 100-ml volumetric flasks. Dilute each to mark with water. Analyze these calibration standards as in Section 5.6.1. Repeat this calibration

procedure on each day that samples are analyzed. Calculate the spectrophotometer calibration factor K_{C} as follows:

$$K_c = 5 = \frac{A_{1'} + 2A_{2} + 5A_{3'} + 10A_{4'} + 15A_{5'} + 20A_{6'}}{2A_{1} + A_{2} + A_{3} + A_{4'} + A_{5} + A_{6}}$$
 Eq. -2

where:

 K_C = Calibration factor.

 A_1 = Absorbance of the 5 μ g Cr⁺⁶/100 ml standard.

 A_2 = Absorbance of the 10 μ g Cr⁺⁶/100 ml standard.

 A_3 = Absorbance of the $\overline{25} \mu g Cr^{+6}/100 ml$ standard.

 A_4 = Absorbance of the 50 μ g Cr⁺⁶/100 ml standard.

 A_5 = Absorbance of the 75 μ g Cr⁺⁶/100 ml standard.

 A_6 = Absorbance of the 100 μ g Cr⁺⁶/100 ml standard.

6.2.2.1 Spectrophotometer Calibration Quality Control. Multiply the absorbance value obtained for each standard by the K_C factor (least squares slope) to determine the distance each calibration point lies from the theoretical calibration line. These calculated concentration values shall not differ from the actual concentrations (i.e., 5, 10, 25, 50, 75, and $100~\mu g~Cr^{+6}/100~ml$) by more than ___ percent (to be determined) for five of the six standards.

7. Emission Calculations

Carry out the calculations; retaining at least one extra decimal figure beyond that of the acquired data. Round off figures after final calculations.

7.1 Total Cr^{+6} in Sample. Calculate \dot{m} , the total μg Cr^{+6} in each sample, as follow:

$$m = \frac{V_{m1} K_c AF}{V_a}$$
 Eq. -3

where:

 V_{ml} = Volume in ml of total sample.

A = Absorbance of sample.

F = Dilution factor (required only if sample dilution was needed to reduce the absorbance into the range of calibration).

va = Volume in ml of aliquot analyzed.

- 7.2 Average Dry Gas Meter Temperature and Average Orifice Pressure.

 Drop. Same as Method 5, Section 6.2.
- 7.3 Dry Gas Volume, Volume of Water Vapor, Moisture Content. Same as Method 5, Sections 6.3, 6.4, and 6.5, respectively.
- 7.4 ${\rm Cr}^{+6}$ Emission Concentration. Calculate $c_{\rm S}$ (g/dscm), the ${\rm Cr}^{+6}$ concentration in the stack gas, dry basis, corrected to standard conditions, as follows:

$$c_s = (10^{-6} g/\mu g) (m/V_{m(std)})$$
 Eq. _____

7.5 Isokinetic Variation, Acceptable Results. Same as Method 5, Sections 6.11 and 6.12, respectively.

8. Bibliography

1. Test Methods for Evaluating Solid Waste. U.S. Environmental Protection Agency. SW-846, 2nd Edition. July 1982.

- 2. Cox, X.B., R.W. Linton, and F.E. Butler. Determination of Chromium Speciation in Environmental Particles A Multitechnique Study of Ferrochrome Smelter Dust. Accepted for publication in Environmental Science and Technology.
 - 3. Same as in Bibliography of Method 5, Citations 2 to 5 and 7.

APPENDIX G
Phosphoric Acid Field Sampling Data

n e an amaglale ns a	A	- 7 1 2	2		PART	RTICULATE SA	SAMPLING DATA	A SHEET		,	22	
	70	7.		NOTITION AND STATE CROSS SECTIONS	CK CPOSKS	1	FOIIA TIONS			AN AN	AMBIENT PENP	
2' :: (587)	14 S	Phos.		200	1		097 a ₀ - a ₀					ts.
entrar .	DATE	0		1	۱ .		† † L	Γ		t	STATION PRESS	
energe e) C INVIA	25.31					H = 513	5130-FG-Cp.A 2	Tr. Vp	HE	HEATER BOX TEMP	in Hg
41.7	Anod						_	- 7				OF
• • .	BASE (CO.	illin					P.+ (e	ish cheek	cx 12		PROBE HEATER SETTING	TING
	SAMPLE BOX N	OF JE					3	gent design	9	<u></u>	PROBE LENGTH	
······································	METER BOX NUMBER	MBER	1					7	į		HOZZLE AREA (A)	ri .
والدامية المالات	Qw/Qm						570°P	570P 11MT: 1251	<u>v</u>	ථ		sq ft
inga sa	රී									80	DRY GAS FRACTION (Fd)	Fd)
i i	TRAVERSE	SAMPLING	Warance	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	SAMPLE	IMPINGER
werspa (POINT	TIME (min)	PRESSORE (IN H20)	(oF)	(Ts) (oR)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (cu ft)	N (O.F.)	AVG OUT (Tm) (OF)		OUTLET TEMP (OF)
- S	8	0	2.00	75		80'	160	158.64	7.8	10	2	2
)		2	3,6	77		115	1/37		8	X	252	57
514 ,	a	2)	200	CK		1	1.34	11736	88	200	25/	555
(es	2	5	20,7	73		7/	1,84	17. 80	+		752	2
رج رج	2 0	22	11 7	27		8/	102	174.860	47	jo.	3 551	42
()	7.8.4	30	012	235		725	187	178 650	97		154	58
<u>-</u>	£ .	Z.	27.8	13%		378	324	183,122	7.6		258	69
	₃ ⊆	40	1/2	22		176	eg in	1806 115	76	323	156	1,0
,	-	25	6.01	23		12.	2.83	197 200	99	3	1250	100
1251	11	33	$\phi' \gamma$	12		71	2,42	201.751	94	138	157	61
		00						tors 86.2	- 			
								, in the second				
								1 1.		2940		
					7/-	#		10 to		2		
					1-10	11/5-7		V55 =	10.01	2.6		
। (187 1)					1	they als		K: 25	1.28			
••••								AH:2.23				
٠.,	OEM! FORM			-								

OEHL FORM 18

And the second s	AIR POL	LUTIC	N PARTICUL	ATE ANA	LYTICAL	DATA		
BASE		DATE				RUN NUMBER		
KELLY AF	:る	5	JAN 8	7		1		
SUILDING NUMBER		<u> </u>		•	MBER C	· · · · · · · · · · · · · · · · · · ·		
375				WETS	CRUBBA	ER - ANOI	DIZI	NGLINK
		···						
•			PARTICU FINAL WE		1017	AL WEIGHT	T	EIGHT PARTICLES
1	ITEM		(pm)		18111	(gm)	"	(gen)
FILTER NUMBER								
ACETONE WASHINGS Hall Filter)	(Ptobe, Front							_
BACK HALF (II need)	•d)							
			Total We	ight of Partic	ulates Colie	octed		ø
1.			WATI	ER				
	ITEM		FINAL WE		INITI	AL WEIGHT	}	WEIGHT WATER
IMPINGER 1 (H20)	Heo		221		2	.00		21
IMPINGER 2 (H20)	<u>H20</u> H20		210	>	2	200		10
IMPINGER 3 (Dry)			ک	?		0		3
IMPINGER 4 (Silica O	•1)		224	.0	2	00		24
			Total We	ight of Water	Collected			58 an
11.			GASES	T			1	
ITEM	ANALYSIS		ANALYSIS 2	ANAI	LYSIS 3	ANALYSIS	,	AVERAGE
VOL % COZ								
VOL % 0 ₂	·							
VOL % CO								
VOL % N ₂								
	**************************************	Vol %	N2 = (100% - %	CO ₂ - % O ₂ -	% CO)	1	1	

	!	***************************************										
	7	2		PARTI	ŢĒ	SAMPLING DATA	SHEET	316	1	1.9	_	
RUN NUMBER	0.10	SCHEMATIC	TIC OF STACK	CK CROSS SECTION	ECTION	EQUATIONS				AMBIEN	YZ XZ	60
DATE	o o	y) (1	₩ ₩ ₩ + 460	٦,	!		SYATION 00	1 PRESS	i i
PLANT				### ##################################	\bigcap	н = .5130		Ts . Vp		HEATER I	BOX TEMP	an ur
BASE I/O	the Court			•	TC (Pre Die Die	elet 15	in the		PROBE H	HEATER SETTING	NG NG
SAWPLE BOX H	Carlos Por			티	- CK.		,	D		PROBE L	LENGTH	
METER BOX NUM	THE ENC	Rei	Sprides	Cart	Readmided Rutine to	AT#TIC.	M, 9			NOZZLE	AREA (A)	u
Qw/Qm		ACCOMP	maskik ()	the 1:40 for awali	n anadim					78 °5	4.0	11 60
ರೆ						START	推	JAG 1	. 1	DRY GAS	DRY GAS FRACTION (Pd)	ନ
TRAVERSE	SAMPLING	THE STATE OF THE S	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS	SAS METER TEKP	ِ او	SAMPLE	IMPINGER
POINT	TIME (min)	PRESURE (M H20)	(OF)	(Ts) (°R)	HE AD (Vp)	PRESS.	SAMPLE VOLUME	N. (RO).	AVG (Tm)	OUT (0F)	BOX TEMP	OUTLET TEMP (OF)
	0	0	18/		100	7/12	201.42X	7.57	十	/ 8	154	Ch
7	ħ		24		13.0	1651	209.256	60		10	757	24
***	æ č		260		0 17	16/1	211/255	i k	- '\ 		252	55
6	77		64		20	1.85	21/30	45	12	3/5	22.00	62
e	26	3	\mathcal{Z}		6)	2.20	250,150	1/2		1 22	250	60
7	275	e ,	124		175	200	322 415	196	700	200	756	6
Q	32	20	15		127	3,72	236.480	1		6	25%	63
ı	36		73		125	2.9 (234.215	1807	7	200	457	89
-	277	7,9	17		200	279	258,700	12/2		200	250	200
2	4/8	*	1			417	245,90	3		2)	tis g	,
									++	H		
										+		
										+		
										+		
OEHL FORM	1, 18			7								

		4 Bloom 5 - 1 - 1 - 1 - 1 - 1 - 1		PAR	PARTICULATE SA	SAMPLING DATA	SHEET		Contraction	under			
RUN NUMBER		SCHEMATICOF	TIC OF STATE	SYACK CROSS SECTION	ECTION	EQUATIONS			¥	WBIENT TE	EMP		_
37	ر رح	_ 	7.10	,		08 = 0F + 460			1	\propto	7	Нo	, i
DATE		×	حسنو	١			ſ		<u></u>	STATION PRESS	ress		
। स्र	くない		•			H = 5130	P. A 2	Ta Vo	_1	Card		in Hg	p.
PLANT	, -	-							_	LEATER BOX TEMP	X TEMP	30	
Thod	15. M. 27.									PROBE HEA	HEATER SETTING		T
10/1						ָ ֪֭֝֞֝֞֝֞֝֝	0.0.0	111					
SAMPLE BOX NI	APP.					105-1 -60	Jose Teris Chestral Sin H	12cz	ام		ENGTH		
		· · · · · · · · · · · · · · · · · · ·						Coop	 	5		in	_
METER BOX NUMBER	MBER							>		NOZZLE AREA (A)	IEA (A)	aj bs	
Ów/Qm									ਹੰ	43			
ಂ						3770-225			. ō	RY GAS FR	DRY GAS FRACTION (Fd)		
TOAVEDCE	SN ION O	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS METER	TEN		SAMPLE	IMPINGER	
POINT	TIME (Bin)	PRESSURE (In H20)	(oF)	(Ts)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	⊼ (F	AVG (Tm)	OUT (0F)	BOX TEMP (OF)	OUTLET TEMP (PF)	
7	2	4	20			1.26	245.190				249	89	
	ď	3-6	12		5)	1,72	247,550	92	Ø		242	6.7	
7	Ø	0	77		81,	2.47	250,306	76	2		266	3	
b	2)	٩	74		.20	2.31	253.000	6.5	200	$\frac{1}{1}$	25.6	000	T
	76	77	73		17.	6/10/2	256, 100	5	श्र	a	120	66	
2	77	7,	44		162	23/4	10767	42	200	90	124	3	T
Ø	29	37	2		427	7,55	7.66.410	45	32	-	25/	66	
0	32	2	75		6),	12/2	2.70,610	2	5		249	65	Ì
0/	36	, 0	73		3/*	2.09	273.260	98	20	_	250	3	
//	0h	4.5	73		17	14,7	124.025	-	00		757	67	\top
4	700	5.0	73		9/1	581/	21112	5 1	, o	_	12/	628	
	418						282,70						
													T
	Tm=912		1111	76	18					+			
	1000	3	,	2	3								
													١
	1215- Lu	41							-	-			T
	1515	10,0106											11
EHL FORM	18		1			-				1	7		1

	5 JAN	•	F	NUN NUMBER	
	5 JAN	•		2_	
		I SOURCE NU			
		1	MBER 2	0.1	
- · · · · · · · · · · · · · · · · · · ·		WET SC	RUBBE	R -414. 131	ZII OF LINE
	PARTIC	ULATES		 	
		WEIGHT	INITI	AL WEIGHT	WEIGHT PARTICLES
Front					
	Total 1	Veight of Partic	ulates Colle	cted	g m
	WA	TER			
	2		INITI	AL WEIGHT	WEIGHT WATER (gm)
HO	191	4	2.0	50	-6
* Hio	211	4	20	0	14
		/ >		Ü	6
	221	.4	20	00	21.4
			Collected		35,4 am
				<u> </u>	
1	ANALYSIS 2	ANA	L YSIS 3	ANALYSIS	AVERAGE
	Vel % N ₂ = (100% -	% CO ₂ . % O ₂	- % CO)	*	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	ANALYSIS	Total Y WA FINAL (9) H20 211 Total Y GAST ANALYSIS ANALYSIS ANALYSIS 2	Total Weight of Partice WATER FINAL WEIGHT (Am) 1944 214 Total Weight of Water GASES (Dry) ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	Total Weight of Particulates Calle WATER FINAL WEIGHT INITY (gm) 194 20 214 20 Total Weight of Water Callected GASES (Dit)) ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	Total Weight of Particulates Callected WATER FINAL WEIGHT (gm) 194 200 214 200 6 0 2214 200 Total Weight of Water Callected GASES (Dry) ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS

	Pay L	2/2	SCHEMA	TIC OF STACE	PART	H	SAMPLING DATA	A SHEET	atto	7 =	9 /	TEMP		
	一部の一人	#0d ,	4	De A A Doce	4 T	3	OR = OF + 460	°4.Co. ▶] 2	Ę		STATION PRES	54 9,190	oF in Hg	
	PLANT MOCKIZED	Jan -	Se tush		<i>ا</i> ر	142 [7.44 good		Ts .		HEATER PROBE	HEATER BOX TEMP NO SOF PROBE HEATER SETTING 10 0	OF NG	
		MOER K. 41.2			RE	اکمی	Assund Sktor	1 - 05 House 4 Status 17			PROBE	PROBE LENGTH	i	T T
	7	kel 4 2					Re las	chekat	1-15/4 Kg	. 15	ථ	78,80	sq ft	7-1
	ತ										DRY GA	DRY GAS FRACTION (Fd)	ଟ	
A C	TRAVERSE POINT NUMBER	SAMPLING TIME (min)	PRESSURE (no H 20)	STACK TEMP (OF) (T8	(Ts)	VELOCITY HEAD (Vp)	ORIFICE DIFF. PRESS.	GAS SAMPLE VOLUME (QL ft)	GAS IN	GAS METER TEMP	OUT OF	SAMPLE BOX TEMP (OF)	IMPINGER OUTLET TEMP OF	
22	4	07	33.0	59			1.19	183.07.6	56	++	52%	107	23	ТТ
	14		7	200			587	2 1. 146	73	1	5.6	203	46	T
	7 0	+ 2/-	2 6	15.5		200	16.4	170 460	38 7			107	ST.	Т
	67	20	5.5	6.3		12.	2,41	196,410	44	}	183	203	2/2	
	La	250	2	ÉN		4	2.53	969 767	17X		27	208	85	
	6	75	27.4	750		(9	5/10	206.240	581		Vy	208	19	1
	1,1	40	1/2	373		(//	1 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2	307,456	€×		100	019	20	Τ
(in)	77	4/1	4.4	4.7		4/	867	315,334	28		57	701	7.9	П
20		27076	-					31x. L17						T
· · · · · · · · ·														7 7
														7
														<u> </u>
														П
														T
'	DEHL FORM	18												1

	28	2.42	J. O.		PAR	RTICULATE SA	SAMPLING DATA	N SHEET					
	RUN NUMBER	,	7 SCHE	IXTIC OF SI	SCHEMATIC OF STACK CROSS	SECTION	EQUATIONS			<u> </u>	AMBIENT TEMP	EMP	
	一天石	Crann	*				OR = OF + 460	9		<u>_</u>	SA A TION BRESS	OBFRE.	FI O
	1-	00	_					<u></u>	(٠	- -	1
		<u>ا</u>	1				H = 5130: FG-Cp. A	.1	Ts. Vp	ĮΞ	HEATER BO	DX TEMP	A11 111
	Ans	んづ					_ _ _/	¬				SP.	Мo
	BASE 1/2 //						15 July 12	l			PROBE HEATER	ATER SETTING	<u>o</u>
	SAMPLE BOX NUI	Z MER					<i>,</i> ,	1			PROBE LENGTH	NGTH	
		_					ر بر	0.0	シナ	" ft.			Ş
	METER BOX NUMBER	BER					lost leave charged just.	ביות כתובה	مير و	~ ~	NOZZLE AREA (A)	REA (A)	
	Qw/Qm		T								පි		sq ft
	<u> ತ</u>		7		,					<u> </u>	KT GAS P	DKT GAS FRACTION (FB)	
	TRAVERSE	SAMPLING	STATE	STAC	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS M	Ē		SAMPLE	IMPINGER
8	POINT	TIME (Bin)	PRESENTE (SET 120)	(oF)	(T.e)	HEAD (Vp)	PRESS.	SAMPLE	N G	AVG (Tm)		TEMP	OUTLET
6		V	2 1	6/		61	1 Ex	010 016	+ 222+	+			
	7	2 2	24	\$2 +	+-	1	1,94	370,668	2	1	1	122	33
	7	Ø	4,4	29	-	\	101	123,390	5 83		7	102	54
	7	7)	0/4	63		1/6	1,79	1325.36	84	7	.3	503	\$
	5	10	D'h	150		117	1.96	325,724	· 文	2	,	502	30
	9	32	5.0	427		120	225	351,490	700	7	3	207	5/
	, k	240	7/8/	13	- - -	127	10,000	133/1/20			7	203	ES CONTRACTOR
	26	3,	30	2		229	200	128 KZ	4.7	70	,	70%	5%
	5 ×	200	1 1	73		125	2000	244/01	427	20	7	137	100
	+	202	1	1,2	-	10	11/1	20000	200	90	10	100	60
	71	nd	2.7	p%)		120	720	1353.720	96 6	3	4	200	63
		Sh									\dashv		١
	19							- Service		-	-		
	(m/15			7	1	73.600					-		
		-		7									
	15.0	A		_					+	-	+		
	F HY	717		+	1				+	+	+		
	1 11		05/1										
	22	1771	190212	+					+		+		
	DEHL FORM	18											

	AIR POL	LUTIC	ON PARTICUL	ATE ANA	LYTICAL	DATA		
BASE		DATE	· · · · · · · · · · · · · · · · · · ·			RUN NUMBER		
KELLY		,	6 JAN'	89		3		
BUILDING NOMBER	<u> </u>	<u> </u>		SOURCE NU	MBER PL	4		
3.75					SCRUE	BARR M	HOD	121146 1 144 F
1.			PARTICU	LATES				
i T	EM		FINAL WE		INITI	AL WEIGHT (gm)	WE	EIGHT PARTICLES
FILTER NUMBER								
ACETONE WASHINGS (Hall Filler)	Probe, Front							
BACK HALF (If needed	ט							
			Total We	ight of Partic	ulates Colie	eted		ý m
11.			WAT	ER				
17	EM		FINAL WE		INITI	AL WEIGHT (gm)		WEIGHT WATER
IMPINGER 1 (H20)	H20		198	, Ø	2	200		-2-¢
IMPINGER 2 (H20)	H20 H20		206	.ψ	2	-00		-2-\$ 6.\$
IMPINGER 3 (D1y)			1,	8		0		1,8
IMPINGER 4 (SIIIca Ge	0		218	t.6	2	-00		18,6
			Total We	ight of Water	Collected			24.4 em
111.			GASES	(Dry)				
ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	YSIS 3	ANALYSIS 4		AVERAGE
VOL % CO ₂								
VOL % 0 ₂								
VOL % CO								
VOL % N ₂								
		Vel 9	6 N ₂ = (100% - %	co ₂ - % o ₂ -	% CO)			

APPENDIX H
Sulfuric Acid Field Sampling Data

1		1111							1 100			
TAN 87 B C H E E E D C C C C C C C C C	RUN NUMBER	5 HO	SCHEM	THE OF STACK	CR 35 51	CTION	EQUATIONS OB OF	S		AM	FENT TEMP	40
	DATE	1	-		=(+ L H K	٢		, T	TION PRESS	
	PLANT	1		89			H = 513	۸ .		HE	TER BOX TEMP	in Hg
State & State State State & State Stat	ANODIZ.		2020)7+		•	, O.H.	₹.			No.
TANDER ON HUMER MATCHES	Z. C.	า	<u>.</u>		_		,	7 11 4	-	<u> </u>	190 90	2
CONTROL CONT	SAMPLE BOX	NUMBER 1		-1	34		Pickar	عدالء	15/		BE LENGTH	. <u>s</u>
TRAVERSE SAMPLING STACK TEMP (TD) ORIFICE GAS GAS METER TEMP SAMPLE POINT THE MEMORY OF TRAVERSE SAMPLE SAMPLE SAMPLE SAMPLE COLUMN (MM) (MM) (MM) (MM) (MM) (MM) (MM) (M		UMBER #2					Fit &	hilea	Ĭ .		3/8) bs
Co Co Co Co Co Co Co Co	*									g G	Jes.	
TRAVERSE SAMPLING STACK TEMP VELOCITY ORIFICE SAMPLE S	ತ		- And -							DR	GAS FRACTION	(Fd)
NONITE TIME PRESSURE TO TO TO TO	TRAVERSE	SAMPLING	STATE	STACK TE	SMP	VELOCITY	ORIFICE	GAS	GAS M	12	\vdash	IMPINGER
2 4 3.0 87 14 1.53 357.00 92 90 187 2 4 3.0 52 4 93 90 188 3 50.344 93 90 188 3 50.344 93 90 188 3 50.344 93 90 188 3 50.344 93 90 188 3 50.344 93 90 188 3 50 50 90 90 90 188 3 50 50 90 90 90 90 90 90 90 90 90 90 90 90 90	POINT	TIME (min)	PRESSURE (18-18/20)		(Ts)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (Qu ft)	N (9.6)			OUTLET TEMP
2 4 3,5 54 63 44 63 49 63 49 18 2 4 3,5 64 63 49 63 64 64 63 64	1	0	3,0	48		4/	1.53		97	+		80)
2		7	3,0	64		./3	1.65	34	93	90	/85	200
1	3	æ	 	69		9/	1.82	7	46	16	187	00
2 20 20 20 20 20 20 20 20 20 20 20 20 20	4	77	3.2	67		4/1	1.84	. 4	8	76	189	90
1 24 5.0 270 104 1.00 270 104 180 1.2 2.1 2.1 2.1 2.1 2.1 2.1 1.00 1.00	<i>S</i>	16	4.0	67	+	18	202	4	100	93	195	72
19 5.5 5.6 6.7 5.14 5.74 5.74 6.7 10.7 6.5 6.6 6.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10	30	2,	5,0	for the	+	177	2.40		720	94	/80	4
16 32 3.1 111 3.1.7 3.1.7 11.1 108 97 1.1.7 1.1.1 108 97 1.1.7 1.1.1 1.0.1 1.1.1 1.0.1 1.1.1 1.0.1 1.1.1 1.0.1 1.1.1 1.0.1 1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1		7,7	7 3	1	+	+4,	3,17	_	707	4/5	197	00 6
16 34 5.2 44 385.590 110 98 184 17 47 50 68 1.23 2.67 589.841 107 58 153 18 45 50 110 98 184 18 45 50 110 98 184 18 45 50 110 98 184 18 52 50 110 98 18	92	1	V	1		746	3.19	11.7	1,00	76	766/	100
1, 4/3 5/2 (27 .2.3 2.6.7 589.341 109 9/8 (133 .2.4 352.951 100 9/9 19/1 .2.44 35% 6/8 100 9/9 19/1 .2	9/	36	7.7	12		74	16.2	5	9/2	86	187	9.5
17 47 412 51.44 332.951 p3 48 5th, 689 p3 48 5th, 689 p3 49 p3 49 p3 41	//	7	2,0	85,		,23	2.67	7,4	101	98	183	36
3%. 68 3%. 68		7.7	4.5	2.7		12	۱	136.288	601	33	161	93
		4X SPC			+			3%. 68			-	
				-	+							
											+	
					+					-		
					+							

	<i>y</i>							* cuert					
	1	22	22		PAK	<u> </u>	AMPLING DAI	A SHEE!				XIII	
RUN N	NUMBER	0	SCHEM	SCHEMATIC OF STACK CROSS		SECTION	EQUATIONS					1 2 1	
(N)		Ho XX			=(1	OR = OF + 460	9			STATIO	STATION PRESS	A C
4 2 3	7	18 / A)	<u> </u>	C	\frac{1}{2}		:	2 7 2			7000	+	, i
TNA	3	10 01		.	1	_	H = 1313	51.50 P.	Ta V		HEATER	R BOX TEMP	a ri
7	A1.20/274/60 (11)	_	Subby		Þ	\	.J		1		Car	.2	Ąo
BASE		1			<		124C26	72.			PROBE	HEATER SETTING	
	Kell	h				7) -	0			370	Carl.	
A W Y	Z.	UNGE K			/ なんなっ		0 10	プリンプ	16 (0) 9	" Hay	1000		
1	RETER BOX NUMBER	MBER	1		You	7	t tool	<u>,</u>	15.105		NOZZLE	NOZZLE AREA (A)	ui
				Je	\		•	`	5 3 2				so ft
₩ O / ® O	Ę										ပိ		
ರೆ											DRY GA	GAS FRACTION (Fd)	
187	VERSE	SAMPLING	KTAFIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	EMP	SAMPLE	IMPINGER
	POINT	TIME	PRESEDE	(OF)	(Ts)	HEAD	DIFF.	SAMPLE	Z	AVG F	Puo	BOX	OUTLET
	N D M D K	(ata)	(OF H Au)		(0R)	(d a)	Œ	(gr ff)	(0F)	(0R)	(0F)	(OF)	(oF)
3		0	2,3	X.		14	1.59	36.409	18/		001	/20	ક્ષર
(*	4	4	3.1	24		165	1,86	372.845	90/		00/	190	72.
	7	35	3.2	65		17	1.93	10.195	107		101	192	30
	4	77	4,1	100.3		11/1	2.44	404,676	107		101	83/	g
	J	9/	4.1			12	3.57	407.767	- 688		3	184	77
	e	20	4.5	157		:23	_4	411.288	110		20	88	740
	4	24	5.0	Ž		25	8.93	414.785	77		701	/83	76
		32	2,6	636		124	2,82	418-308	7		103	193	46
	7	37	~ .	43		171	2.8%	422.018	113		70	192	76
	4	32.	2.0	64		16	2,23	112.22	1/13		100	100/	78
	1	40	റി	12/2		1/1	00.00	4/20.07	213		105	1888	36
	17		36			9/1	1087	112/1/2/2	711		101	(87	47
		राजको वर्द						727, 176	1				
			1/2 572 = 1	0.2834	7		H		7	7	7 0	27.	
			Ts: 70'				D -	エア	<u>₹</u>	12	11/1	70	
			201=										
			AN: 4.56							1	+		
							-		+		+		
											+		
OEHL	L FORM	18											

2

gradien in de septembre de sept

P	1cf 2			PART	PARTICULATE SA	SAMPLING DATA SHEET	<	40 = 19			
RUN NUMB	1,50,	SCHEM	SCHEMATIC OF STACK CROSS SECTION	CK CROSS 3		EQUATIONS OR = OF + 460	₹	t		AMBIENT TEMP	e o
0	Jan 98			7 *		H = 5130	5130-Fd-Cp-A 2	r S	STAT	19 PRESS	in Hg
PLANT	Anoxizey Clust				ہدر		3 =		HEAT	HEATER BOX TEMP 130	4o
ــــــــــــــــــــــــــــــــــــــ	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					MORY MORY	1			PROBE LENGTH	
NETER BOX	NUMBER 2					Pre la	Prelabent 15th you	the for	<i></i>	NOZZLE AREA (A)	in sa ft
Qw/Qm									ථ දී	ς, β4	
河	1325									245 TRACTION (R	o
MRAVERS	 	STATIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS MET	타	SAMPLE	MPINGER
NUMBER	(min)	PRESSURE (in H20)	(°F)	(0.R)	HEAD (Vp)	PAESS.	VOLUME (QL ft)	Z E	AV6 OUT (Tm)	TEMP	TEMP
7	©	3.0	8.5		Ø 0	1.12	06 62 Ft	$\forall \exists$	10	140	70
7	7	٦,	83		1	1,50		10.3	201	187	63
77	708	45	25/		20	220		80%	107	188	776
4	12	1	6%		*	200		1,40	101	136	- 13
9	20	70	107		120	1900		501	70/	123	813
7	27	2/6	69		.26	3 35		φ1],	103	600	181
57¢	27	6.5	70%		127	4:5%		0//	92	151	80
10	26	ve	000		90	2.00		S ×	101	139	74
	210	5.0	89		117	1.97		501	00/	126	15
7 2	Ĭ	3/6	8		(7	76)	486,998	102	48	12.2	7.
	A X A	Common Con	10.50	2.3	1980						
	12 Tref	222	10.11		76.39						
	Tm = 99°F										
	27:5-HG										
•											
OEHL "	MAY 78 18							 			
!											

are, in supply see.

ing they expand you

	4	240			PARTIC	RTICULATE SAM	SAMPLING DATA SHEET	SHEET					
	RUN NUMBER	022	SCHEMA	SCHEMATIC OF STACK CROSS	CROSS SECTION		EQUATIONS					dK3/	
	TW0	, H, Sć	1		4	E	OR = OF + 460			1,	200		o _F
	() Livo	۵ کې د کې			7	_ ٦	<u>.</u>	7					2
	PLANT	705			_		H = 5130.F	·	Ta. Vp	<u>.i^</u> .	HEATER BOY	CTEMP	
at	modes	7				Α	J	٦			3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	oF.
))0/1	0					,	. 010	//	7	Card	EN SELLIN	
	SAMPLE BOX NO	UNBER					12 ACA (C.	Post lealed "I'v to) cook	25 (24 V	<i></i>	PROBE LENG	Ā	
	METER BOX NUMBER	MBER	-)		NOZZLE AREA (A)	EA (A)	a l
Prop. of				٠									sq ft
9	#\ \#\ 									<u>-</u>	3		
. *	రి		Ī							1	DRY GAS FR	GAS FRACTION (Fd)	
	TRAVERSE	SAMPLING	STATIC	STACK TEMP	\vdash	/ELOCITY	ORIFICE	GAS	GAS M	GAS METER TEMP	\vdash	SAMPLE	IMPINGER
	POINT	TIME (min)	PRESSURE (in H20)	(OF)	(Ts)	HEAD (Vo)	DIFF.	SAMPLE	Z	AVG (Tm)	:	BOX	OUTLET
94	To The		2 -2	-	+	+	76	1/10 HOC	(F)	+		E 0	GE /
nalis.	7	20	₩ •	ox/	-	1/2	1,00	77777	200	9	3/2	300	13
	7 (1	2	4.6	2/3	-	1/2	- 52		26	2	7	32	65
	h	7.1	4.5	69		. 16	1,83		126	6	3 13	12	67
	٧	9]	20	189		8/1	2.04		97	9	7	21,	89
	7	20	2,0	629	+	17.9	1.2.2		98	7		No.	827
	7	27	700	192		O'C'	bore		707	4		13%	62
	8	16	1~	8%	-	122	9,00		do	79	101	12	60
	0)	36	8,5	19		126	2,96		86		1/ 8/	82	67
	** '/	\mathcal{S}_{n}^{\prime}	2,0	6.9		123	2.67		200		1 60	25	46
•	1	77	2,4	100	+-	167	277	019 210	+ 25 +		100	25	da
. No r		3						10116					
				+						+	1		
in Narmin						4 N T D	7	101	494	8			
۰, ,،								\) }		+		
ማ ደ ሉ : , · •											H		
e gare										+-		+	
	- til FORM	18											
	YAY												

THREE	100	rnan 3	PARTICULA	PEREE	T.	SAMPLING DATA	A SHEET	0.4	ta i	1.6.7	9 (
	H 2	50,4		A CHOSS S		OR = OF + 460	. 09				8 L	Po
9	-विराह्म हैं	Ţ		34	\bigcirc	н = 5130	5130.Fd.Cp.A 2	Tm. Vp			29.190	in Hg
moch	(2 1/2) STE	3			o ₹ '	, 7 + ½.	-, 3	s -		PROBE	PROBE HEATER SETTING	90 10
1/e/L	NUMBER			In item		1 crop of	book	1 %		PROBE	730 PROBE LENGTH	
NETER BOX N	LA #1					State	P1 9	;		NOZZLE	72 E AREA_(A)	ui
	ج 4					Pre liak	lak chok. O	الم الم	43	ථ	3.68	sq ft
3							•			DRY GA	GAS FRACTION (Fd)	6
TRAVERSE	SAMPLING	STATIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	di di	SAMPLE	IMPINGER
POINT	TIME (min)	PRESSURE (in H20)	(oF)	(Ts)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	N (40)	%E 6	OUT (9.5)	BOX TEMP	OUTLET TEMP
1 4	0	0,0	79		. 115		537542	35	(Wa)	83	132	H
7	7	2.0	花		1.3	1.43	528.415	85		83	/ # 4	og,
27	,	000	100		77	1,55		200		200	125	00
2	74	20.00	1/0		9/.	2.01		g g		% % %	100	7 2
e	20	3.0	32		. 195	17		91		188	7/1/	1/2
	24	2.4	4		24			16		906		38
8	27/2		17.0		340	2,01	Sald Kick	94	1	£ 8	12.5	86
0)	36	5.5	7-		225	4 4	7 (11)	95		35	145	89
	40	3.5	7		177	ايرا		76		3	(35)	16
43	44(5)64	2.5	1-1-		8/1	67.03	563.211	42	1	8	/34	200
							¥4		1	1 70 %		
								N N	Z			
										>		
DEHI FORM	er.											

MAY 78 18

	2	2 3. 6			PARTIC	PARTICULATE SAI	SAMPLING DATA	SHEET				
,	RUN NUMBER	3	SCHEMA	SCHEMATIC OF STACK CROS	ROSS SEE	NOTES	EQUATIONS			AMB	AMBIENT YEMP	
inglighter seri	the	47504		1	1		0 R = 0 F + 460	c				do.
ine	DATE			,	\	_		1	•	STA	STATION PRESS	
, .	6 140	12 29		P	<u>,</u>	_	H = 5130	5130-Fd-Cp-A 2	Tm Vo			in Hg
	PLANT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)7			— ა		Z W	HEATER BOX TEMP	!
	BASE	CAK + 16/2/5/20	1.5 £ 2.7.		*		<u></u>	,		PRO	PROBE HEATER SETTING	NG SN
। ज् राम्				}	1	_	Pace 2.	95				
	•	TUMBER 7 -		7	ر المراجع المراجع		1000	0, 10,	'31 (c)		PROBE LENGTH	
		-	1	_	X 2	7	1 0xx 12	akchica	2			ia
	ŏ~	NUMBER # 2	 ,	Ĺ					120		NOZZLE AREA (A)	,
	ow/on								pers-	8		II by
namen en en projektionen	రి									OR.	DRY GAS FRACTION (Fd)	G
	TRAVERSE	SAMPLING	STATIC	STACK TEMP	h	VELOCITY	ORIFICE	GAS	GAS ME	GAS METER TEMP	SAMPLE	IMPINGER
9	POINT	TIME (min)	PRESSURE (in H20)	(°F)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	N (S)	AVG OUT	BOX	OUTLET TEMP
6	-	·	25	+	+	777	C 27	1200	+	+	130	
3		27	٠Υ.	58	+	777	53	563.611	S S	tö	134	3.5
vejire i	3	20	3.9	Girra	-	D.	1.47		25	00	/2/	42
المراجع والمراجع المراجع	7	11	3.2	72	-	3	8.93		200	a Sa	12.1	22
- جميواني	5	9)		戊		22	7		16	8	/35	75
14.4-18.pr s	9	20	3.5	15		1235	4		93	8	124	7.5
telt miles H	4	24	- 1	17.	-		2.70		93	da	134	pt
n Pylloge In	200	22	3.5	7	+		2.59		ğ	286	131	223
	9	3/6	2	10	-	300			42	200	967	73
reĝeraj endi		40	3.0	75		6/	2.13		92	₹	202	47.
33	2	197	3.0			18	ر ان ان		1/2	184	/06	72
-		1964						571/09				
-4					1				+	(35)		
-					+				+	_		
			19875=	10.0290	-	tens I	14 17	1	202	+		
L. uju (7.73°F		-	77777		1		-		
-4444-			14.87°F		-							
			NH-2-18									
 												
i l as ki t					+				+	+		
- Ger	OFN! FORM	٥٢				1					J	
.	- 4	J										

APPENDIX I Total Chromium Field Sampling Data

PLANT K. II												
	hraniust 1		SCHEMATIC OF STACK CROSS		SECTION	EQUATIONS OR = OF + 460	05			AMBIE	AMBIENT TEMP 47	Ąo
,	68 /			A C		5130	S130-Fd-Cp.A	Tm		STATIC	STATION PRESS	in Hg
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4177		· ·			3 4	Ts. vp		HEATER BOX	R BOX TEMP	40
BASE	Wet Co.	34		150)	विष्	Office was	ne hah	t st	SIS HO	PROBE	HEATER SETTING	
BOX	UNBER 12						•	£ /	B	PROBE	LENGTH	
METER BOX NUMBER	BER					adum	posume Hill = 7	, ,	`.	NOZZLE	N F	(A) Day metree
Qw/Qm		 				Static MW =	29.0			රී	48	i be
රී		3								DRY G	DRY GAS FRACTION (Fd)	ବ
TRAVERSE	SAMPLING	I STATACA	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	EMP	SAMPLE	IMPINGER
POINT	TIME (min)	AL KAN	(oF)	(Ts) (°R)	HEAD (Vp)	DIFF. PRESS. (H)	SAMPLE VOLUME (cu ft)	IN (OF)	AVG (Tm) (OR)	OUT (OF)	BOX TEMP (PF)	OUTLET TEMP (PP)
1 1	0	3.0	25		71/	£57	609.002	17		B	248	
	4	4.0	28		8/	1 7		7.7		30	250	42
8	•	4.6	59		,205	2.30		82		11	255	क्र
•	a	8,(E		22			87		73	253	4.5
5	9,5	5.7	3,		.23	2.61		90		77	253	20
2	07:	0.9	200		67,		101 101	100		25	253	55
0	24	200	19		272	2.97	47. 47.	26		22,50	248	800
00	4	5.5	2		17.	4_ 7		98		80	246	5
01	%	. •	19		20	1 :		98		82		00
"	40	5.0	19		.20	2,30		66		833	247	09
17 (2	#	4.0	ē		.17	1.96		iao		<i>a</i> S	245	Ö
	48(Mal)						647.641					
								Ţ 		+		
										1		

		/0		1	PART	ICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET					
	dall	home	J		**********	1000					A GRIEUT TOLL	97	
Z C	NUMBER			A 10 01 31 A	CRU33 3		EGUA 110RS					į .	
	7 JAN	N 89			T		OR = OF + 460	Q		ľ	Cost	1	чo
DATE	`				7		L	ŗ			E LOS LA	£53	
	200		Ţ		<u> </u>		H = 5130	5130-Fd-Cp-A 2	Im. Vo	_1:			in Hg
PLANT	Asso, Par	Jal Works	. 171		出	, ez	_1	ာ ဝိ	s I		HEALER BOX	A LEMP	100
BASI	TIMO DITA	BASE INCOUNTING WAY OUTUR					Tract	link ha	7601		PROBE HEATER	ER SETTING	
_	Nateel	1#2				-4	real.		C. Park		cond	+	
SAMP	LE BOX	NUMBER								L	ROBE LENG)TH →	
MET	METER BOX NUMBER	UMBER								<u> </u> z	NOZZLE AREA	EA (A)	THE STATE OF THE S
											Cons		sq ft
m∂ / m ∂	e O									<u> </u>	رود ن	+3	
3			1/4C							<u> </u>	DRY GAS FRACTION (Fd)	ACTION (Fd	
<u>_</u>	RAVERSE	SAMPLING	STAFIO	STACK	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS M	GAS METER TEMP		SAMPLE	IMPINGER
1 this	POINT	TIME (min)		(oF)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	IN (DE)	AVG (Tm)	OUT T	BOX TEMP	OUTLET TEMP
7/8		0	30	55		12	05/	11/ 2/2	50	+	+	240	53
1	7	4	3,0	53		77/	1.62	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	96	100	}	245	52
10	en	34	35	19		77	1,85		86	181		45	52
0	4	li li	3.5	19		91.	1.85		æ	8	-	246	53
	V	"	3.5	8		8/	4		100	88	1	43	53
	9	20	5.0	19		,21	2.43		10	8	\dashv	4/2	53
	4	14	6.7	6		.23	3.13		707	8	77 0	4	77
	8	28	74	و		62.	Mr		101	7(+	46	00 C7
		3%	4	3		28	3.40		102	8	1	77	707
	0),	a sp	3	2		22	2.60		100	9	2 74	45	282
Á	3	1/1	200	19		.21	2.45		105	8	-	7/10	12
<u>.</u>		48/00						687.104					
								-					
	1	4 60											
	1	10.10 =						7		1	1		
	K	- 0					lotal ("	$t = T \delta_{i}$	7,00	- -	-		
	4	200								-			
	SH	= A.39											
	(PSTS)	£ 10,3439											
		1 1											
OEHL	HE FORM	38											

OEHL FORM 18

ĺ	AIR POI	LLUTI	ON PARTICU	LATE ANA	LYTICAL	_ DATA		
BASE		DATE				RUN NUMBER		
KKLLY		9	JAN 8	· ·		/		
BUILDING NUMBER				SOURCE NO	MBER C M 20	mum		
375						BBER		
Į.			PARTIC	ULATES				
	ITEM		FINAL W		INIT	IAL WEIGHT (gm)	٧	VEIGHT PARTICLES (@m)
FILTER NUMBER								
ACETONE WASHINGS Helf Filter)	(Probe, Front							
BACK HALF (II needs	ed)							
			Total W	sight of Partic	culates Coll	ected		gm
и.		*****	WAT	ER				
,	TEM		FINAL W		INIT	IAL WEIGHT		WEIGHT WATER
IMPINGER 1 (H20)	HN03		94	<u>,</u> Ø	/ (00		-6. Ø
IMPINGER 2 (H20)	HN03		107.	5	15	0		-6.\$ 7.5
IMPINGER 3 (Dry)			3, 3	3		0		3.3
IMPINGER 4 (Silica Gel)		219.1 20		00		19,1		
		Total Weight of Water Collected			23,9			
111.		GASES (Dry)						
ITEM	ANALYSIS 1		ANALYSIS 2	ANA	YSIS ANALYSIS			AVERAGE
VOL % CO ₂								
VOL % 02								
VOL % CO								
VOL 3 N2								
		Vol %	N ₂ ± (100% - %	co ₂ .%o ₂ .	% CO)		4	

	1	Total Ch	coming #2			PART	11	SAMPLING DATA SHEET	A SHEET	ΔH	16.1=		
## ## ## ## ## ## ## ## ## ## ## ## ##	He	RUN NUMBER	V 89	SCHEM	IATIC OF STAC		CTION	EQUATIONS OR = OF + 4	09		AKBIE	49 49	Йo
## ## ## ## ## ## ## ## ## ## ## ## ##		DATE			Ι,	1			ن نونه		STATE	29.535	in Hg
A	A	PLANT	TNG WETSER	UBBER	7	U	\frown		° -		HEAT	HEATER BOX TEMP	
Mutch #2 Mutch #4 Mutch	Co		#2			K 1		المحال	was -ga		PROB	E HEATER SETTI $/90$	Ů Z
CONTON THE STACK TEMP VELOCITY OFFICE POSTURER PRODUCE H, O = 0	Continue	※ こ	NUMBER #2			33.0	_	Mekea	e-dich a	10 to	PROBI	LENGTH 7	.:
Co OW/Om Co OW/Om TRAVERSE SAMPLING THE STACK TEMP VELOCITY ORIFICE GAS POINT OF THAT OF THA	Co. The control of th	METER BOX	IUMBER					Static	1. = 02H	ナ	7 7 ON	LE AREA (A)	ty os
TRAVERSE SAMPLING TATATE STACK TEMP VELOCITY OFFICE GAS POINT (TIME TIME (OF) (OF) (OF) (OF) (OF) (OF) (OF) (OF)	TRAVERSE SAMPLING FACTEMP VELOCITY ORIFICE GAS GAS METER TEM POINT THE POINT	Ow/Om		<u> </u>				MM		~	ပ်	25	
TRAVERSE SAMPLING FATE STACK TEMP VELOCITY ORIFICE GAS POINT TIME IN THE TIME NUMBER (OF) (OF) (OF) (OF) (OF) (OF) (OF) (OF)	TRAVERSE SAMPLING THE STACK TEMP VELOCITY ORIFICE GAS GAS WETER TEMP POINT THE NUMBER (OF) (TS) (TS) (TS) (TS) (TS) (TS) (TS) (TS	კ		3	\						DRY	DRY GAS FRACTION (Fd)	6
POINT TIME HORSTON (TE) HEAD DIESS. VOLUMER 1	NUMBER THE THE SALE OFFI (TE) HELD DIESS. SOLUTION (TR) (TE) (TE) (TE) (TE) (TE) (TE) (TE) (TE	TRAVERSE	SAMPLING	A144	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS ME	FER TEMP	SAMPLE	IMPINGER
1	1		TIME (min)	IN HZO)	(oF)	(Ts) (0R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (Qu ft)			BOX TEMP	OUTLET TEMP (OF)
2 8 14 1.61 3 6 60 .15 1.73 4 7 60 .15 1.73 5 7 6 61 .21 2.43 6 7 .21 2.43 8 3.25 9 3.3 60 .28 3.25 10 7.8 3.25 10 7.8 3.25 10 7.8 3.25 10 7.8 3.25 10 7.8 3.25 11 7.8 3.25 12 7.8 3.25 13 7.8 3.25 14 7.80 17 7.80 18 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.	2 8 60 115 1.73 95 89 89 85 89 85 89 89 89 89 89 89 89 89 89 89 89 89 89	1 9 10	0	0	54		12	1.39	687.962	╁┤	1	225	46
2 8 6 1.73 4 12 1.73 5 10 6 1.73 6 1.73 7 2.43 9 2.13 9 3.15 9 3.15 9 3.15 9 3.15 9 3.15 10 9 3.15	2 8 60 .15 1.73 95 89 89 5 60 .15 1.74 1.96 90 90 90 90 90 90 90 90 90 90 90 90 90		*		58		7/1	197		16	88	237	42
5 6 18 2.08 5 24 2.08 6 6 1.21 2.43 7 8 2.13 9 3.15 9 3.16 9 3.16 10 0.17 10 0.18 10 0.17 10 0.18 10	5 (6 6) 18 2.08 100 90 60 7 12 2.43 101 90 90 70 70 70 70 70 70 70 70 70 70 70 70 70		90 5	1	09		15	1.73		900	28	283	**
6 20 21 2.43 9 32 62 .24 3.13 9 32 60 .24 3.15 10 3.02 10 3.02 10 44 10 62 .24 10 7.80 10 7.80 10 7.80 10 7.80 10 1.80 10 1.80	\$ 24 2.43 (02 90 12 12 12.43 (02 90 12 12 12 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10	v	199	-	129		181	2000		000	9	The	42
2 24 62 28 3.25 6 2 28 3.25 6 6 2 28 3.25 6 6 2 24 3.02 6 6 6 2 24 3.02 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 24 2.13 102 90 2 28 3.75 104 91 9 3.1 20 105 91 10 36 3.20 105 91 10 4 4 67 2.4 2.92 105 93 12 4 2.92 105 93 12 4 2.92 105 93 13 15 104 91 14 14 67 2.1 3.45 106 93 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	9	σ		9		.21	2.43		101	90	234	50
9 37 9 37 10 78 3.26 10 74 3.02 11 14 61 21 3.45 11 14 61 21 3.45 12 3.45 14 3.45	9 37 (0) 128 3.26 (05 92 92 92 92 92 92 92 92 92 92 92 92 92	2	24	-	62		17.	3.13		100	8	233	50
10 36 3.02 12 4.4 3.02 12 4.45 14 4.8(34) 61 .21 3.45 177.345	10 36 105 105 105 105 105 105 105 105 105 105	अ ठ	23		1		27	3.75		107	9	720	יה הלב
1, 48 \ 62 \ .21 \ 3.45 \ 7.4 \ 3.45 \ 12. \ 3.45 \ 7.77.345 \ 7.7	12 1 2.92 (06 93 12 12 13.45 (06 93 12 12 13.45 (06 93 12 12 12 12 12 12 12 12 12 12 12 12 12	0/	36	-	62		.26	3.02		1,05	16	234	55
(2) 44 (46) (6) (2) (3.45 777.345 (6) (48) (48) (48) (48) (48) (48) (48) (48	12 445 106 45 (1864) (1		26		62		,24	2.82		90/	93	£87	57
			44		10	+	.21	3.45	1	9	23	241	57
	1 1 1 1 1 1 1 1 1		(9(Sbp)		+				H				
	.												
	1 1 1 1 1 1				+					+			
	, , , , , ,												
	, , , ,												
	, ,												
	1				+						-		

124	homium	tent C#	7	PARTICULATE SA	SAMPLING DATA	SHEET				
RUN NUMBER		SCHEMA	ATIC OF STACK CROSS	ROSS SECTION	EQUATIONS			AMBIENT	IT TEMP	
9 1	TAN 89		\	////	0.0			<u>ري</u>	tz	6
DATE			1		1	1		STATIO	STATION PRESS	
Madiena W	non Wet Sen	relan		<u>-(</u>	H = 5130.	5130-Fd-Cp.A 2 T	Tm . Vp	Con		in Hg
7	フ		2 d			- - 0		HEALE	A BOX	9
BASE)]•	- Listed by	tatological	ų	PROBE	PROBE HEATER SETTING	
SAME LES	K # 2		ſ	· 4	Catheren C	Applying Collins	Toler Jack	PROBE LENG	FNGTH	
N.trek #2	4 #2		22				- // / /			.5
METER BOX	NUMBER				•	3	5. AS	NOZZL	NOZZLE ARGA (A)	
Qw/Qm		T				1	grad	<u>ن</u> ن	Yan Y	sq ft
3		1						DRY GA	DRY GAS FRACTION (Fd)	G
TRAVERSI	E SAMPLING		STACK TEMP	\prod	ORIFICE	GAS	SAS M	7#}	SAMPLE	IMPINGER
NOINT		TIN TOOR	(9F)	(TE) HEAD (OR) (Vp)	PRESS.	VOLUME (Qu ft)	N AVG	OUT (oF)	TEMP GP	TEMP
_	Bo	0	70	7/1	1.0	727.345	}	1	205	52
7	þ		29	£/'	86.7		101	6.3	255	85
2	8		61	6)'	. 4		101	93	215	55
*	a	+	62	07,	2.33		104	93	242	900
4	9,		100	275	- ₹ '		#3	177	225	900
214	7.7		25	,25	2.42		90/	76	243	305
J	28		62	.24	2.80		106	95	241	60
9	Z.		B	.21			106	95	229	9
	36		70	,20	2.34		901	500	246	Ø,
2	2		10	-0/	7:70		200		525	62
	18/04.1	•		0,1		767.157	23	1	107	9
I.	760									
\$					Tient Cut	1 bt = t	96			
19	= 61									
Ha	3.40									
	H									
JYSIJ	\$ 10.2524									
OEHL FO	FORM 18									

	AIR POL	LUTIC	ON PARTICUI	LATE ANA	LYTICAL	DATA		
BASE		DATE				RUN NUMBER		
KELLY			9 JAN			2		
BUILDING NUMBER				SOURCE NU	MBER CITY	omium		
379	5				SCAUB			
I.			ARTICI	ULATES				
.11	TEM		FINAL W	-	INITI	IAL WEIGHT (gm)	*	VEIGHT PARTICLES
FILTER NUMBER				!				
ACETONE WASHINGS Hall Filter)	(Probe, Front							
BACK HALF (II needed	d)							
			Total We	eight of Partic	ulates Colid	rcted		gm
11.			WAT		r			
	TEM		FINAL W		INIT	IAL WEIGHT		WEIGHT WATER (gm)
IMPINGER 1 (H20)	HW03	_	92	,5	/	00		-7.5
IMPINGER 2 (H20)	HNOZ		109,		1	00		9.5
IMPINGER 3 (Dry)			2.			0		2.8
IMPINGER 4 (SIIIca Ge	a)		216.8		2	.00		16.8
		Total Weight of Water Collec		Collected			21-6 ==	
10.			GASES (Dry)					· · · · · · · · · · · · · · · · · · ·
ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	YSIS ANALYSIS		ļ	AVERAGE
VOL % CO2								
VOL % O ₂								
VOL % CO								
VOL % N ₂								
		Vol 1	% N ₂ = (100% - %	CO2 - % O2 -	· % CO)			<u> </u>

SAMPLING SAM	SCHEMATIC	11TY ORIFICE GAS GAS METER TEL DIFF. SAMPLE IN AVG CAL IT, OF) (CAL IT) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	201 200 200 200 200 200 200 200 200 200
POR 102 102 102 102 102 102 102 102 102 102	SCHEMATIC OF STACK CROSSS	(oF) (TS) (OF) (OF) (OF) (OF) (OF) (OF) (OF) (OF	
	Page 101- Jahren 89 Weck # 2	SAMPLING STIME (min) 220 22 22 22 22 22 22 22 22 22 22 22 22	977 977

THREE C DATE 9 Jan 39 PLANT ANDRIBUS BASE KELLY SAMPLE BOX NUMBER	CAPON	ON THE PARTY OF TH	PAK I CULA SCHEMATIC OF STACK CROSS SECTION	PARTIC R CROSS SEC		EQUATIONS OR = OF +460 H = [5130-F4 Cp.A Post Lade Cleek	SHEET SHEET Co. C.	Tan. Vo		STATION PRESS HEATER BOX FEMP COW PROBE HEATER SE COW PROBE LENGTH	CONTENT ON PRESS ETTING CONTENT OF THE ATER SETTING	A H H P	
CON CONTRACT	PLING BME BME	STATIC PRESSURE (in H20)	STACK TEMP	(Te)	VELOCITY HEAD (Vp)	ORIFICE ORIFICE OIFF.	GAS	GAS	GAS METER TEMP (AVG) (CD)	0221E	AREA (A) 3 (B) - S C SAMPLE BOX TEMP TOPP	sq ft impinger outlet remp	
++++	++++	2000	0000		ini	12/2/2	\$07.310	1000 1000 1005	07000	vering	2500		
	27226	ichumu Sprinde	eecee		2000	non in		00000	יר אי ער אי (") באי אינדער	7200	2572	555 555 555 555	
8	9350	3,0	ee		727	7.47	96t 468	80		427	24.4	25	
75.60 0H-7-	10:01		101	3	F= 7	6.73							

	AIR POL	LUTION PARTIC	ULATE ANA	LYTICAL	DATA	
BASE		DATE			RUN NUMBER	
KELLY		9 JA	N 89		3	
BUILDING NUMBER	5 .		SOURCE N	IMBER 1074 WFG	L CIFRON	IUM
1.		PART	ICULATES			
	ITEM	1	- WEIGHT (gan)	INIT	IAL WEIGHT (食田)	WEIGHT PARTICLES
FILTER NUMBER						
ACETONE WASHINGS Hall Filter)	6 (Probe, Front					
BACK HALF (If need)	•d)					
		Totul	Weight of Parti	culates Coli	ected	ğ ar
II.			ATER	η		
	ITEM		WEIGHT	INIT	IAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)	1403	. 9	3.5		00	-65
IMPINGER 2 (H20)	14403	10	75	10	00	7.5
: MPINGER 3 (Dry)		4	5-2		0	5,2
IMPINGER 4 (SIIIca G		21.	6,2	2	-00	16.2
			Weight of Water	Collected		22.2
III.	ANALYSIS	ANALYSIS 2	ES (Dry)	LYSIS	ANALYSIS	AVERAGE
VOL % CO2						
VOL % 02			ag i sawa a i i i		e shekabaya na	1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VOL % CO		e American de la compansión	. e.c. 180 e.c.	?		
VOL % N ₂						
	The second secon	Vol % N ₂ = (100% -	% CO2 - % O2 .	% CO)	manan San San San San San San San San San	and the second s

 $(\omega_{\mathcal{F}}(\omega_{\mathcal{F}}),\omega_{\mathcal{F}}(\omega_{\mathcal{F}}),\omega_{\mathcal{F}}(\omega_{\mathcal{F}}),\omega_{\mathcal{F}}(\omega_{\mathcal{F}}),\omega_{\mathcal{F}}(\omega_{\mathcal{F}})$

The state of the s

(This page left blank)

APPENDIX J Hexavalent Chromium Field Sampling Data

(This page left blank)

oF oF in Hg	TEMPORTER TEMPORTER OUTLET TEMPORTER
STATION PRESS 29,530 240 PROBE HEATER SETTING 190 PROBE LENGTH 72 CP . SC DRY GAS FRACTION (FQ)	SAMPLE BOX (OF) 723 2 22
STATION PRE STATI	TEND OF THE STATE
Person on.	AVG (TB)
HEET CON 3. Im Chick 0	SA S
) N E "	ONIFICE SAN PRESS. VOI 1933 989 983 989 983 983 983 983 983 983
SAMP	
SECTION	WELOCITY HEAD (Vp)
SCHEMATIC OF STACK CROSS SE RECEIVED RECEIVE	STACK TEMP (T.E.)
EMAYIC OF	ceeeeeeeee
· · · · · · · · · · · · · · · · · · ·	STATIC PRESSURE (in H20)
Runt 3 San 89 San 89 San 89 The BA Scrubba Col 42 Col 42	18 Cain) 20 C C C C C C C C C C C C C C C C C C
DATE DATE TO JOHNER SAMPLE BOX NUMB NUMPCK METER BOX NUMB NUMPCK METER BOX NUMB OW/OM	TRAVERSE POINT NUMBER 12 12 12 12 13 14 15 16 17 17 18 18 18 18 18 18 18 18
1- 1- 1- p- p- 14 p- 10	東窓 111

C. C. C.	1-7-	Sap 2052	7	PARTICU	LATE SAM	PARTICULATE SAMPLING DATA SHEET	SHEET					
RUN NUMBER			SCHEMATIC OF STACK CROSS SECTION	CROSS SECTION		COUATIONS OD = OF 1460				AMBIENT TEMP	TEMP	ji o
DATE TAN	18		A	7	 J	5130	74 Co. A] 2	E		STATION	STATION PRESS	in Hg
PLANT	42+ 60.26	4.) 				· · · · ·	>	:	HEATER BOX	BOX TEMP	<u>1-</u>
	0	3		Det T		post L	uh du	h. St.	Fdiely	PROBE	PROBE HEATER SETTING	
SAME TO SE	NUMBER		1	Jan /			B	عط		PROBE	PROBE LENGTH	į
METER BOX N	UMBER I			Sax						NOZZLE	NOZZLE AREA(A)	sq ft
₩ Ò/ /MÒ										<i>ප</i>	ent	
රී										DRY GA	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	STATIC	STACK TEMP	\vdash	LOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	MP	SAMPLE	IMPINGER
POINT	TIME (min)	PRESSURE (ia H20)	(OF)	(Ts) (OR)	HEAD (Vp)	OIFF. PRESS. (H)	SAMPLE VOLUME (cu ft)	N (OF)	\$(1.6) (B.(8)	OUT	BOX TEMP (0F)	OUTLET TEMP (PF)
31	0	0	63		11	1.37	448 STO	20	╁	83	782	2.5
	4	0	602		(3	1: 43		83		83	234	53
11:	2	0	62		14	1.59		2		28	233	ធ
2	a	0	101	1	5	1.71		88		28	233	53
4	16	7.0	67	1	13	1.93		888	1	200	237	Z)
24	200	1:0	9		100	1,16		3			735	
4	81	2.0	19		12	4		90		100	852	1
0-	32	2,0	(0)		20	2.96		4.5		14	235	2
10	36	2.0	101		22	2.85		1		9	23.5	176
77	Ş	(.8	19	1	2,	2.62		100	+	26	235	4
74,	(N)(00)	Đ	29		3		062 630	*	-		1/2	4
1						400	1					
	8.4			-		Japa Cie	11 = 14.	Z Z		+		
7,	79 =											
N	7.7.4			+					1	+		
				-								
19575	9.8364		-	-								
OFHI FORM	S X			-						1		

OEHL FORM 18

ASE	<u>.</u> <u>.</u>	UTION PARTICUL			TUN NUMBER	:	
KELLY	y 1, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	10 JAN	89.		*** 3 *** *		•
UILDING NUMBER			SOURCE NUMB	ER Cr	6		
375			INF.T	- Sc.P	UBRER		
		PARTICU	LATES				
17	rem	FINAL WE		INITI	AL WEIGHT (gm)	WI	EIGHT PARTICLES (gm)
FILTER NUMBER							
ACETONE WASHINGS Half Filter)	(Probe, Front						
BACK HALF (if needed	d)						
		Total We	ight of Particula	ates Colle	eted		
		WATI	R				
	rem	FINAL WE		INITI	AL WEIGHT (gm)		WEIGHT WATER
IMPINGER 1 (H20)	NAOH	95	5- Ø	-10	00	• • •	-5-6
IMPINGER 2 (H20)	NAOH	16.	,2	10	00	·	-5-6 10-2
IMPINGER 3 (Dry)		0.0	ϕ		0		Ø
IMPINGER 4 (Silice Ge	127 / 128 13 13 - 1 44 - 13 - 14	216	, , 2	20	00		16.2
	******	Total We	ight of Water Co	llected **	رسدر الانتخاب المناهدية	******	21,4
J.	ANALYSIS	GASES ANALYSIS	(D _{FF}) ANALY	215	ANALYSIS	r	
ITEM	1	2	3		4		AVERAGE
VOL % CO2							<u> </u>
VOL 1 02				·	a ex la la ja		
VOL % CO	· · ·		1.000 m				
VOL % N2							

in Hg IMPINGER OUTLET TEMP (PF) PROBE HEATER SETTING DRY GAS FRACTION (Fd) (OBE L. 7.2
NOZZLE AREA (A) . 3/8 29.530 HEATER BOX TEMP SAMPLE BOX TEMP (PF) 190 PROBE LENGTH 52 STATION PRESS AMBIENT TEMP X DUT GAS METER TEMP BH3 = 1.9 ATO RES gre teak cheek @ '5" Hy Ts. vp <u>≅</u> € 2000 00, व H = | 5130-F4-Cp-A | 2 static ? -.19 <u> 197.756</u> SAMPLE VOLUME (au ft) 7,580 PARTICULATE SAMPLING DATA SHEET MW = 29. pitot take OR = OF + 460 PRESS. 2.65 **EQUATIONS** 2.435 VELOCITY HEAD (Vp) I SCHEMATIC OF STACK CROSS SECTION SE SE E S S STACK TEMP 102 (oF) S. CONTRACTOR OF THE PARTY OF THE 6.3 6.3 6.3 etete 5 AMOBILING Wet Scrubber HORAVALLA Chrosinum 18602 SAMPLING TIME (min) 40 7 44 77 2 36 4 2 3 * 00 10 TAU 89 METER BOX NUMBER TRAVERSE Point Number Nutch 3 Qw/Qn H 9 Z ပြ 192 114

9

9

FORM MAY 78 OEHL

in Hg P			IMPINGER	TEMP (OF)	52	55	26	SK.	79	60	65								
	_ Telin M. I III Te	My AS FRACTION (F)	SAMPLE	TEMP (0F)	2510	236	235	23	24	730		•							
	<u> </u>	Cp ORY GL	肾上		97	726	25	126	76	92	28	20	1						1
· Vp			S.	_	00%	100	001))))	107	701	101	97							_
~	o de como de c		GAS	- 1									1157.881						_
H = \[\frac{5130}{}	4 4 4		ORIFICE DIFF.	PRESS.	27,		je	Α.	A'h.	λė	1,97	76.			70,711				_
			VELOCITY	(d _N)	1/2/	1/4	30,	.263	127	8/,	-17	ine Sala			1				
P	2		CK T				_			1					20 25				
				-	es es	67	9	ē	62	127	79	13			4				_
2			STATIC	(in H20)	98	æ	2	99	- ¥	ez	9	36						<u></u>	
Wet Scewar	UMBER MBER		SAMPLING	(min)	0 %	95	N	300	24	35	*	\$	1,03)84	74	(2)	1 90	1,7,1	775	
LANT LANT	Led # 1 IMPLE BOX N With # 1 ETER BOX NU	Qw/Qm Co	TRAVERSE	NUMBER	- 1	~	*	4	4	2	"	7		12	1	2 /	DH	188	
	H= [\$130.Fd.Co.A] ² . In VP HEATER BOX TEMP (ANY CANA CAN	H= $\left[\frac{130 \cdot \text{Fd} \cdot \text{Co} \cdot \text{A}}{\text{Co}}\right]^2 \cdot \frac{\text{Im}}{\text{Ts}} \cdot \text{Vp}$ HEATER BOX TEMP CAN CAN FROBE HEATER SETTING FOR LULK CHUCK G "Hy PROBE LENGTH CAN CAN CAN CAN CAN CAN CAN CA	H= [5130-Fd.Cp.A] ² . Im. vp HEATER BOY TEMP CANA PROBE HEATER SETTING PROBE LENGTH (MA) CANA NOZZLE AREA (A) CANA DRY GAS FRACTION (FG)	H= \[\frac{5130 \text{Fd} \text{Cp-A}}{\text{TB}} \] \frac{\text{Tm}}{\text{Ts}} \text{Vp} \text{Heater Boy Temp} \\ \text{Cand} \\ \text{Cand} \\ \text{SQUMME} \\ \text{SQUMENT} \\ \te	Souther Fourther Factority Factori	South South	Souther Cont Cont	Souther Factor Factor	Souther Factor Factor	Selection F.C.	Souther	Souther	SQUARTER	SOUTH STACK TEMP WELGOITY ONIFICE SAMPLE WIND OUT TEMP ONIFICE SAMPLE ONIFICE ONIFICE SAMPLE ONIFICE ONIF	ER HEATER DO TENDED TO THE CALLE ON "HE TERR BOT TENDER HEATER SETTING ER CAS METER TENDER CHAPTER TENDER CHAP	September Figure Figure	See Mar.	Souther	The property of the table of table of the table of table

The state of the state of the second state of the state o

DASE	- 10	DATE			-	NUMBER		······································
KELLY		10 5,	AN 5	9.		2		
BUILDING NUMBER			SOU	RCE NUM	ABER Cr	5		
375	·				it Su	rubas r	<u> </u>	
1.			AL WEIGH		INITI	AL WEIGHT	 	EIGHT PARTIC
ITEM			(%m) .	<u> </u>	1741 1	(ga)	ļ	(gm)
FILTER NUMBER					·			
ACETONE WASHINGS (Probe Hall Filter)	, Front							
BACK HALF (If needed)								
		Tol	al Weight (of Partici	ulates Celle	cted		
II.			WATER					
ITEM		FINA	AL WEIGH'	T	INITI	AL WEIGHT		WEIGHT WAT
IMPINGER 1 (H20)	<i>laot</i>	10	10-C		10	00		\varnothing
IMPINGER 2 (H20)	nort	10	00-6 12-2		. 10	00		22
IMPINGER 3 (D17)			2.5			0		2-5
IMPINGER 4 (Silice Gel)		7.	16.7		2	00		16.7
		Tet	al Weight	of Water	Collected			21,4
111.	ANALYSIS	G. ANALYSIS	ASES (Dry.	ANAL	vsis	ANALYSIS		
ITEM	1	2			3	4		AVERA
VOL % COZ					·			
VOL % 02								
VOL % CO				·				
VOL S N2					*.			
								l

AMD FORM 651 REPLACES ORHE 20, MAY 78, WHICH IS OBSOLETE.

		FOR A PLANT BIBLION	er o
## 2	GO A 2 Im Vp	IN S	in Hg
SAMPLING STACK TEMP VELOCITY ORIFICE ORIFIC	Let @ 15" 43		P.
Static France 29" Static France 29" Static France 29" Static MW = 320 50 (0.8) (0.9)	A20 = 4	PROBE LENGTH 72	in
SAMPLING STACK TEMP STACK TEMP WELDCITY ORFIG ORF (min) ORF (min) ORF ORF ORF ORF ORF ORF ORF OR	77. "	NOZZLE AREA (A) . 318	sq ft
SAMPLING TIME (min) TIME (min) 4 3.0 50 (Te) (Vp) 4 3.0 53 4 4.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 24 5.0 60 25 5.0 60 26 5.0 60 27 5.0 60 28 4.0 60 29 5.0 60 20 5.0 60 20 5.0 60 21 5.0 60 22 5.0 60 23 5.0 60 24 6.0 60 25 6.0 60 26 6.0 60 27 6.0 60 28 6.0 60 29 6.0 60 20 6.0 60	<u>.</u>	DRY GAS FRACTION (FD)	
(WILL) (WE) (WE) (WE) (WE) (WE) (WE) (WE) (WE]#}	SAMPLE	IMPINGER OUTLET TEND
4.0 53 4.0 53 4.0 60 5.0 60 5.0 60 60 6	(°F) (°R)	(0.5)	
4.0 59 .17 1.7 4.0 61 .18 2. 5.0 61 .20 2. 5.0 61 .20 2. 4.5 61 .21 2. 4.5 61 .17 1. 4.6 61 .17 1.	36	742	
2.0 6/2 12 22 22 24 24 24 24 24 24 24 24 24 24 24		24.7	
5.0 (al .2.1 2.2 5.0 (al .2.2 6.1 .2.2	83		
5.0 (a) (23 2. 4.5 (a) (4 2. 4.0 (a) (4 1. 5.0 (a) (4 1.		$\left - \right $	
4.5 by	986	246	T
4.0 (4) 40 (4) 5.0 (6)	888 878	246	
3.0 61 14 1.	88		
3.0 61		,	
	06	76 248 53	
	880.745		

	11.1.1	1.	# (6mt		PART	CULATE SA	TICULATE SAMPLING DATA SHEET	SHEET				
	MCAUNIC.	MOMENT	r		THE PERSON NAMED IN	The state of	212010			34	aleut veus	
	NOW NOW		SCHEMA	IIIC OF STAC	-K CKOSS SE		EQUATIONS				L Car	
		TAN 87		\	1		OR = OF + 46	•			Call	Яo
	•		-		₹		L	r			ATION PRESS	
				*	\(\frac{1}{2}\)		_	~	E S			in Hg
	PLANT.	" 11 Car. 16.		Y				_	Ts		ATER BOX TEMP	
Market for Number Market for Market fo	BASE CALL	my Johnson] ₁₂ 2		nest 15	of ched	107		OBE HEATER SET	LING
Sample dox numbers Sample	K	#2			ı			(pens	ا	and	
Control of the contro	E BOX	NUMBER			34				5	œ 0. ————	OBE LENGTH	
Company Comp	METER BOX	NUMBER	T							2	ZZLE AREA (A)	E
Co Charles Sampling STACK TEMP VELOCITY OFFICE CASS CAS WETER TEMP STACK TEMP VELOCITY OFFICE CASS CAS WETER TEMP SHOWLING WITH STACK TEMP CASS CAS WETER TEMP SHOWLING WITH SHOWLING CAS WETER TEMP S											east	sq ft
Thirtees Sampling March Team Verocity Online Name N	₩ Ŏ / * Ŏ									ථ	eart	
TRAVERSE SAMPLING HAND STACK TEMP VELOCITY ORIFICE SAMPLE IN ACTOR TEMP POINT THAVERSE THE SAMPLE IN ACTOR TO THE	రి		U. C.							o Ro	Y GAS FRACTION	Fd)
The first correction The correction	TRAVERSE	-	SARIG	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS ME		SAMPLE	IMPINGER
1			WESTER!	(oF)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (QL ft)				OUTLET TEMP
1		1	10	51		60.	1.03	1	╁	╁	~	2
1			210	57		///	1,26		8.3	7		25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	2.5	(a)		11	1.36		68	7		52
1 11 6 11 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6		a	2,8	63		.13	1.47		18	8	_	ध
1 14 5.65 61 14 1 15 2.45 11 82 2.47 82 2.47 82 2.47 82 61 16 2.98 97 62 62 62 62 62 62 62 62 62 62 62 62 62		91	3.3	19	1	.15	1.71		93	90	\downarrow	i i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	70	3.5	67		3)"	4		44	87	+	23
1 3.2 6.1 1.5 2.88 99 85 2.47 1 3.4 5.8 61 23 2.65 60 88 2.46 1 48 5.8 61 23 2.65 60 88 2.46 1 48 5.00 61 61 87 2.45 1 5.1 60. 5.1 5.00 61 61 61 87 2.45 5.1 5.00 61 61 87 2.46 5.1 5.00 61 61 61 61 61 61 61 61 61 61 61 61 61	40	\$72	01	79	1	77.	-		75			2/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	22	C.	4/2	+	36	4		8	10	1	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	200	dr.	170		3,0	Ί,		90)	0	_	2
11. 44 45 61 .9 3.30 974,130 101 87 246 Tu = & L. Tu	"	%	5.0	19		123	{_ :		90/	8		₹
1. 8. L. 7. E 60. 24 = 2.03 10575 = 9.580		M	4.5	13		6).		1	101	X .		6.5
74 = 84. 75 = 60. 54 = 3.03 575 = 4.5680	į.	48(504)										
74 = 60. 74 = 60. 94 = 2.03 975 = 9.5680										+		
7, = 60. 24 = 3.03 575 = 9.5680		1.			+					-		
7, = 60. 2H = 2.03 475 = 4.5680	1	4			+		1 has 1 1 1	886 1t 3		-		
3 6	7,	111					1	7777				
2 18		- 1								1		
12	7	1									-	
	- 155 - 155	10										
											_	

	AIR POL	LUTION PARTICU	LATE ANA	LYTICAL	DATA	
BASE		DATE			RUN NUMBER	
KRUY		10 JAW	89	1	/	
BUILDING NUMBER	1		SOURCE NU	IMBER)	3	
375			1	SCRU		
l		PARTIC	ULATES			
	ITEM		WEIGHT	INIT	IAL WEIGHT	WEIGHT PARTICLES (\$m)
FILTER NUMBER						
ACETONE WASHINGS	6 (Probe, Front					
BACK HALF (if need	od)					
		Total V	feight of Partic	culates Coll	ected	£ m
<u> </u>		WA	TER	1		
<u> </u>	TEM	FINAL (a		INIT	IAL WEIGHT	WEIGHT WATER (&m)
IMPINGER 1 (H20)	NAOH	9.5	.6	/	00	-5.Ø
IMPINGER 2 (H20)	Nnott	109	(D)	10	0	-5.Ø 9.Ø
IMPINGER 3 (Dry)		2	.9		0	2.9
IMPINGER 4 (Silica G	oi)	216	. こ	2	00	16.2
		Total V	leight of Water	Collected		2 3.1 •
HI.	1		S (Dry)	·	<u> </u>	
ITEM	ANALYSIS	ANALYSIS 2	ANA	LYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2						
VOL % 02						
VOL % CO						
VOL % N2						
		Vel % N ₂ × (100% - 9	CO2 - % O2 -	% CO)	<u> </u>	

(This page left blank)

APPENDIX K
Laboratory Results

(This page left blank)

Ì

1 1 JAN 1989 LABORATORY ANALYSIS REPORT AND RECORD (General) USAFDEHL/SA Kelly AFB BROOKS AFH. TX 78235-5501 LAB CONTROL NA SAMPLE FROM R)do # 2206 - 209 Sukuric Acid Tun | Lontro 1 run 3 run 2 2208 2204 2206 2207 **UEHL NUMBER** 54890007 54890004 54890005 34840006 20.1 20.4 20.4 20.4 BASE NUMBER RESULTS (my/n) 20.1 460001 Comments: 355ml sample Volume 100ml GEHL NUMBER BASE NUMBER RESULTS (mg/m³) Comments: OEHL NUMBER BASE NUMBER RESULTS (mg/m³) Comments: ANDREW RICHARDSON, III, GS-12 Math Rolling Chief, IH Analysis Section MARK J. DIBBEN, 1Lt, USAF Occupational Chemist REVIEWED BY REQUESTING AGENCY (Mailing Address) Cale Krihalom, # 175ANSE USAFOEHL /ECQ prous AF6.TX 78235 Alln: Get Scott

8/4

LABORATORY ANALYSIS R	EPORT AND RECORD (General)	DATE 19 Jan 89
TO:	FROM: USAFOEHL/SA Brooks AFB TX	78235-5501
SAMPLE IDENTITY Anodizing Unit (Kelly AFB TX)		17 Jan 89
SAMPLE FROM		LAB CONTROL NR

TEST FOR

Total Chromium and Hexavalent Chromium

OEHL NO:	BASE NO:	Other	TOTAL CHROMIUM ug/ml	Volume	ug/sample	(Pg)
2491	GU890009	run one	0.0220	258 mls	5.68	5.18
2492	GU890010	run two	0.0096	276 mls	2.65	2.12
2493	GU890011	run three	0.0425	294 mls	12.5	11.94
2494	GU890012	blank	0.0019	330 mls	0.63	
HEXAVALEN	T CHROMIUM					
2495	GU890013	run one	0.0070	294 mls	2.06	1.92
2496	GU890014	run two	0.0123	306 mls	3.76	3.61
2497	GU890015	run three	0.0050	330 mls	1.65	1.49
2498	GU890016	blank	0.0005	229 mls	0.11	/ <u>·</u> · · · ·

LEO J. JEHL, JR.

Chief, Metals Analysis Section

REQUESTING AGENCY (Mailing Address)

USAFOEHL/ECQ (Maj Garrison)

(This page left blank)

APPENDIX L
Isokinetic and Emissions Calculations

(This page left blank)

XRON "NETH 5"	VOAM .METH E.	
RUH MUMBER	XRON "METH 5" RUM NUMBER	XROM "METH 5"
PHOS ACIB RI	PHOS ACID R2	RUN NUMBER
RUN		PHOS RCID R3
METER BOX Y?	RUN	RUN
1.0620 RUN	METER BOX Y?	METER BOX Y?
BELTA H?	1.0020 RUN	1.0020 RUH
	BELTA H?	DELTA H?
2.2300 RUN	2.2100 RUN	2.1490 RUN
BAR PRESS ?	BAR PRESS ?	BAR PRESS ?
29.2450 RUH	29.2450 RUN	
METER VOL ?	METER VOL ?	29.1988 RUK
93.9400 RUN	76.2800 RUN	METER YOL ?
HTR TEMP F?	MTR TEMP F?	73.6000 RUN
82.9999 RUN		MTR TEMP F?
STATIC HOH IN ?	92.0000 RUN	75.0000 RUN
.1400 RUN	STATIC HOH IN ?	STATIC HOH IN ?
STACK TEMP.	.1400 RUN	.1400 RUN
73.9000 RUN	STACK TEMP.	STACK TEMP,
ML. NATER ?	74.0000 RUH	64.0000 RUN
	NL. NRTER ?	ML. WATER ?
58.0000 RUN	35.4800 RUN	
		24.4000 RUN
SAT % = 2.8	SAT % = 2.9	
	SH1 4 - 2.7	SAT 2 = 2.1
IMP. % HOH = 2.9	*** * ***	
2	IMP. % HOH = 2.3	IMP. % HOH = 1.6
% HOH=2.8		
4 non-2.0	% HOH=2.3	ኣ HOH=1.6
		4 100 110
b. 0000		
ኔ C02?	\$ CO2?	5 cooo
.0300 RUN	. 0300 RUN	ጳ ር02?
% OXYGEN?	ኔ OXYGEN?	.0300 RUH
21. 00 00 Run	21.9999 RUN	ጳ OXYGEN?
ኔ CO ?	% CO ?	21. 0 000 RUH
0.0800 RUH		ጳ CO ?
	0.0000 RUN	0.9688 RUN
MMd =28.84		
NH HET=28.54	MNd =28.84	MWd =28.84
IM NEI COLOY	MN WET=28.60	NN NET=28.67
SORT PSTS ?		
	SQRT PSTS ?	SORT PSTS ?
10.0126 RUN	10.0106 RUN	9.9561 RUN
TIME HIN ?	TINE MIN ?	
129.8889 RUN	96.0000 RUN	TIME MIN ?
NOZZLE DIA ?	NOZZLE DIA ?	96.0000 RUN
.3180 RUN	.3180 RUH	HOZZLE DIA ?
STK DIA INCH ?	STK BIA INCH ?	.3180 RUN
48.99 00 Ruh	48.0000 RUN	STK BIA INCH ?
	70.0000 KUN	48.0000 RUN
* VOL MTR STD = 90.130	4 HOL MTO ATT 74 AFT	
STK PRES ABS = 29.26	* YOL MTR STD = 71.857	* VOL MTR .STD = 71.389
VOL HOH GRS = 2.73	STK PRES ABS = 29.26	STK PRES ABS = 29.20
% MOISTURE = 2.80	VOL HOH GAS = 1.67	VOL HOH GAS = 1.15
MOL BRY GAS = 0.972	% NOISTURE = 2.27	% MOISTURE = 1.58
t MITROGEN = 78.97	MOL BRY GAS = 0.977	NOL DRY GRS = 0.984
	4 NITROGEH = 78.97	% NITROGEN = 78.97
MOL NT DRY = 28.84	MOL HT DRY = 28.84	#OL NT DRY = 28.84
NOL HT HET = 28.54	MOL WT WET = 28.68	
VELOCITY FPS = 24.88	VELOCITY FPS = 24.85	MOL NT MET = 28.67
STACK AREA = 12.57	STACK AREA = 12.57	VELOCITY FPS = 24,71
STACK ACFN = 18,761.	STACK ACFN = 18,739.	STACK AREA = 12.57
• STACK DSCFM = 17,664.	2 CTOCY BOOCH - 47 MA/	STACK ACFN = 18,638.
2 ISOKIHETIC = 96.93	* STACK DSCFN = 17,706.	* STACK BSCFM = 18,031.
	\$ ISOKIMETIC = 96.37	% ISOKINETIC = 94.02
		-

		XRON "MET	TH 5"	XRON "NET	TH 5-
KROM -HET	H 5°	RUN HUMBER		RUN NUMBER	
RUN MUMBER		SULF ACID R2		SULF CR R3	
SULF ACID RI			RUN		RUN
	RUN	METER BOX Y?		METER BOX Y?	
METER BOX Y?	••••	1.0020	RUN	1.0020	RUH
1.0020	RUN	BELTA N?		BELTA H?	
DELTA H?		2.26 00	RUN	2.1300	RUH
2.3600	RUN	BAR PRESS ?		BAR PRESS ?	
BAR PRESS ? 29.1900	RUN	29.1900	RUN	29.1 900	RUN
METER VOL ?	KUN	HETER VOL ?	Billi	METER VOL ?	
77.9320	PUN	76.3800	RUH	75.2038	PUN
MTR TEMP F?	• • • • • • • • • • • • • • • • • • • •	MTR TEMP F? 99.8880	RUN	MTR TEMP F?	RUN
102.0000	RUN	STATIC HOH IN ?	KO-1	87.0000 STATIC HOH IN ?	KUN
STATIC HOH IN ?		.1400	RISN	,14 9 0	RUN
.1400	RUH	STACK TEMP.		STACK TEMP.	
STACK TEMP.		72.0000	RUN	73,6008	RUN
76.6666	RUN	ML. MATER ?		NL. WATER ?	
NL. MATER ?	64111		RUN		RUN
P MOTOTIME &	RUN	2 MOISTURE ?		2 MOISTURE ?	
* MOISTURE ?	RUN	1.6008	RUN	1.6000	RUN
1.6000	RUM				
SAT % = 2.5		SAT 2 = 2.7		SAT % = 2.8	
UNI 1 210					
		IMP. 2 HOH = 8.8		IMP. % HOH = 0.0	
IMP. % HOH = 0.0		4.11 4 1.011		118 . 4 11011 - 010	
		₹ MOH=1.6		2 HOH=1.6	
% HOH=1.6				•	
\$ CO2?		ኔ CO2?	DISS	ኔ C02?	
.0300	RUN	.0300	RUN	.0388	RUH
% OXYGEN?		% OXYGEN? 21. 999 0	RUN	2 OXYGEN?	RUN
21.0000	RUN	ኒ CO ?	KON	21.0606 2 CO ?	KUN
2 CO ?		8,000	RUN	8.0000	RUN
0.6666	RUN	•••••		0.000	
		NHd =28.84		MMd =28.84	
MMd =28.84		MN MET=28.67		WH HET=28.67	
MW WET=28.67					
SORT PSTS ?		SORT PSTS ?	RUN	SORT PSTS ?	Atm
19.2834	RUN	10.1440	Kon	18,8398	RUH
TIME HIN ?		TIME MIN ? 96.0000	RUN	TIME NIN ? 96,0000	RUH
96.8008	RUN	NOZZLE DIA ?		NOZZLE DIA ?	NOI
HOZZLE DIA ?		.3180	RUN	.3186	RUN
.3189	RUH	STK DIA INCH ?		STK DIA INCH ?	
STK DIR INCH ?		48.9999	RUN	48,0000	RUN
48. 00 06	RUN				
* VOL MTR STD = 71.	999	* VOL MTR STD = 70		• YOL HTR STD = 71	.342
STK PRES ABS = 29		STK PRES ABS = 2		STK PRES ABS = 2	9.20
VOL HOH CAS = 0.9		VOL HOH GRS = 0. Z MOISTURE = 1.6		VOL HOH GRS = 8.	
\$ MOISTURE = 1.60		MOL BRY GAS = 8.	984	x MOISTURE = 1.6 MGL DRY CAS = 0.	
MOL DRY GRS = 8.9		z MITROGEN = 78.	97	NUL BRY GHS = 0. 2 NITROGEN = 78.	
Z NITROGEN = 78.9	37	MOL HT DRY = 28.	.84	HOL WT DRY = 28.	
NOL NT BRY = 28.8		MOL NT WET = 28.	.67	MOL NT MET = 28.	67
MOL NT WET = 28.6		VELOCITY FPS = 2	25. 18	VELOCITY FPS = 2	4.92
VELOCITY FPS = 25		STACK AREA = 12.	.57	STACK AREA = 12.	
STACK AREA = 12.5	3/	STACK ACFN = 18.	.982.	STACK ACFN = 18.	786.
STACK ACFN = 19,2		* STACK DSCFN = 10	3, 0 92.	* STACK BSCFH = 17	7.871.
* STACK BSCFN = 18, 2 ISOKINETIC = 5		2 ISOKINETIC =	93.18	Z ISOKINETIC =	94.80
₹ 120V TMC LIF = 3	76.01				

XRON *NE	TH 5	XROM *ME	TH 5*	XROM •NE	TH 5.
RUN HUMBER		RUN NUMBER		RUN NUMBER	in J
TOT CR RI		TOT CR R2		TOT CR R3	
	RUN		RUN	IOI CK KS	RUN
METER BOX Y?		METER BOX Y?		METER BOX Y?	
1.0020	RUN	1.6020	RUN	1.8828	RUH
DELTA H?	••••	DELTA H?		BELTA H?	
2.3900	RUN	2.4000	RUN	2.2800	PUN
BAR PRESS ?	Orm	BAR PRESS ?		BAR PRESS ?	
29.5358	RUH	29.5350	RUH	29.5350	RUH
METER VOL ? 78.0420	PUH	METER VOL ?	Su.	METER VOL ?	
NTR TEMP F?	run	79,1960	RUN	76.7500	RUN
89.0000	RUN	MTR TEMP F? 97.6000	RUN	NTR TEMP F?	
STATIC HOH IN ?	NO:	STATIC HOH IN ?	KUN	99.0009	RUN
.1400	RUN	.1400	RUN	STATIC HOH IN ?	
STACK TEMP.		STACK TEMP.	KUII	.1489	RUN
60.0000	RUN	61.0000	RUN	STACK TEMP.	
ML. WATER ?		ML. WATER ?		60.8000	RUN
23.9000	RUN	21,6000	RUN	ML. WATER ?	DILL
		2	,,,,,	22.2000	RUH
SAT 4 = 1.8		SAT % = 1.8		407 h . 4 D	
		•		SAT % = 1.8	
IMP. % HOH = 1.5		IMP. % HOH = 1.3		IMP. 2 HOH = 1.4	
				Inc. 4 (10) - 114	
% HOH=1.5		% HOH=1.3		2 HOH=1.4	
				4 1011-11	
b 0000					
% CO2?	Auto	% CO2?		ኛ CO2 ?	
.0300	RUH	.0300	RUH	.0300	RUH
X OXYGEN?	DINI	% OXYGEN?	Bini	2 DXYGEN?	
21.0000 7 CO ?	RUN	21.9990	RUN	21.0089	RUH
0.9999	RUN	% CO ?	RUN	2 CO ?	
0.0000	KUN	9.0000	KUN	6.9668	RUN
MNd =28.84		MHd =28.84			
MM NET=28.68		MN NET=28.78		MMd =28.84	
		11 AL		MW NET=28.69	
SORT PSTS ?		SORT PSTS ?		SQRT PSTS ?	
10.3439	RUH	18.2926	RUH	10.0110	RUN
TIME HIN ?		TIME MIN ?		TIME HIN ?	
96.0000	RUN	96. 09 09	RUN	96.0000	RUN
NOZZLE DIR ?		HOZZLE DIR ?		NOZZLE DIA ?	
.3180	RUH	.3189	RUH	.3180	RUN
STK DIA INCH ?	61 to	STK DIA INCH ?	B141	STK DIA INCH ?	
48.8988	RUN	48.0008	RUN	48.0000	RUN
• VOL HTR STB = 74.6	81	* VCL HTR STD = 74.	£98		
STK PRES ABS = 29.		STK PRES ABS = 25		* VOL MTR STD = 72.	. 111
VOL HOH GRS = 1.12		VOL HOH GAS = 1.8		STK PRES ABS = 2	9.55
% MOISTURE = 1.48		2 MOISTURE = 1.34		VOL HOH GRS = 1.4	
MOL DRY GAS = 0.98		MOL BRY GRS = 0.5		t MOISTURE = 1.4	
2 MITROGEN = 78.97	=	2 NITROGEN = 78.9		MOL BRY GRS = 0.1	
MOL MT BRY = 28.84		MOL MT BRY = 28.8		% HITROGEN = 78.4 HOL NT BRY = 28.4	
MOL NT MET = 28.68		MOL WT WET = 28.7		MOL NT WET = 28.0	
VELOCITY FPS = 25.	-	VELOCITY FPS = 25		VELOCITY FPS = 2	4.69
STACK AREA = 12.57		STACK AREA = 12.5		STACK AREA = 12.	57
STACK ACFN = 19,23		STACK ACFN = 19.1		STACK ACFM = 18.	618.
* STACK BSCFH = 19.80		* STRCK BSCFM = 18		* STACK DSCFM = 18	,401.
z isokinetic = 93.	. 37	t ISOKINETIC = 5	3. 8 8	1 ISOKINETIC =	93.06

XROM "MRSSFLO"

RUM NUMBER TOT CR RI

RUN

VOL MTR STB ?

74.6818 RUN

STACK DSCFM ?

RUN 19,004.0008

FRONT 1/2 MG ?

.00518

RUH

RUN

BACK 1/2 NG ?

8.6000

F GR/BSCF = 1.0704E-6

F MG/MMM = 0.0024

F LB/HR = 8.6982

F KG/HR = 8.0001

XROM *MASSFLO*

RUN NUMBER

TOT CR R2

RUN

VOL MTR STD ?

RUN 74.6988

STACK BSCFM ?

18,895.0000

FRONT 1/2 NG ?

RUH

.00212 BACK 1/2 MG ?

8.0000 RUN

F GR/DSCF = 4.3798E-7

F MC/MMM = 9.9919

F LB/HR = 8.8881

F KG/MR = 3.2175E-5

XRON "MASSFLO"

RUN MUMBER

TOT CR R3

RUN

VOL HTR STD ?

RUK 72.1118

STACK BSCFR ?

RUN 18,481.0000

FRONT 1/2 MG ?

RUN

.01194 BACK 1/2 MG ?

0.0000 RUN

F GR/BSCF = 2.5552E-6

F MG/MMM = 8.8858

F LB/HR = 0.8004

F KG/NF = 0.0002

XROM "MET	TH 5-	XROM "ME	TH 5"	XROM "ME	TH 5°
RUN MUMBER		RUN NUMBER		RUN NUMBER	
HEX CR RI		HEX CR R2		HEX CR R3	
	RUH		RUH		RUN
METER BOX YO		WEIE: BOX YO		METER BOX Y?	
1.0020	RUN	1,0020	RUN	1.0020	RUN
DELTA H?	,	DELTA H?		DELTA H?	
2.0300	RUK	1.9900	RUH	2.1500	PUN
BAR PRESS ?		BAR PRESS ?		BAR PRESS ?	
29.5300	RUN	29.5300	RUN	29.5309	PHA
METER VOL ?	•••	METER VOL ?		METER VOL ?	
71,9380	Klin	70.7110	PUH	74.4300	PUN
MTR TEMP F?		HTR TEMP F?		MTR TEMP F?	
82,9989	RUN	94.8668	RUH	87.0000	PUN
STATIC HOH IN ?		STATIC HOH IN ?		STATIC HOH IN ?	
.1489	RAN	.1408	RUK	.1408	RUN
STACK TEMP.		STACK TEMP.		STACK TEMP.	
69.8999	RUH	62.0000	RUK	62.0000	RUN
ML. NATER ?	No	ML. WATER ?		NL. WATER ?	
23.1998	PUR	21.4888	RUN	21.4008	RUK
23.1000	kon.	200.000		•••••	
SRT % = 1.8		SAT % = 1.9		SAT % = 1.9	
4 110					
IMP. % HOH ≈ 1.5		IMP. % HOH = 1.5		IMP. % HOH = 1.4	
% HOH=1.5		% HOH=1.5		% HOH=1.4	
				b. 0000	
% CO2?		% CO2?	RUN	% CO2?	Dist
.8398	RUN	.0000	KUN	.0300	RUN
% OXYGEN?		% OXYGEN?	Detti	% OXYGEN?	S ust
21.0000	RUN	21.0000	RUH	21.0000	RUN
ኔ CO ?		% CO ?	nut!	% CO ?	Bust
6.0006	RUN	6.6666	RUN	9,9999	RUN
MILL 00 04		MWd =28.84		MMd =28.84	
MMd =28.84		MW WET=28.68		MN NET=28.69	
NU NET=28.68		UM MC1-50.00		NN ME1-20.07	
SORT PSTS ?		SORT PSTS ?		SORT PSTS ?	
9.5680	RUN	9,4148	RUN	9.8364	RUN
TIME HIM ?	KON	TINE MIN ?		TIME MIN ?	
96.0000	RUS	96.0088	RUH	96.0000	KUN
NOZZLE DIA ?	יוטא	HOZZLE DIA ?		NOZZLE DIR ?	
.3188	RUH	.3189	RUN	.3180	PUH
STK DIA INCH ?	ECH	STK DIA INCH ?		STK DIA INCH ?	
48.9999	RUN	48.0060	RUN	48,0000	RUN
40.0000	KU/I				
* VOL MTR STD = 69.6	55	* YOU MTR STD = 66	.977	* YOL MTR STD = 71.	430
STK PRES ABS = 29.		STK PRES ABS = 2	9.54	STK PRES ABS = 29	. 54
VOL HOH GAS = 1.89		YOU HOH GRS = 1.	0 1	VOL HOH GAS = 1.0	1
2 MOISTURE = 1.54		% MOISTURE = 1.4		% MOISTURE = 1.39	
MOL DRY GAS = 0.98		MOL BRY GAS = 8.		MOL DRY GRS = 0.9	
2 HITROGEH = 78.97		% HITROGEN = 78.		Z NITROGEN = 78.9	7
HOL NT DRY = 28.84		MOL HT DRY = 28.		MOL MT DRY = 28.8	4
MOL MT MET = 28.68		MOL NT WET = 28.		HOL HT HET = 28.6	
VELOCITY FPS = 23.		VELOCITY FPS = 2		VELOCITY FPS = 24	
STACK AREA = 12.57		STACK AREA = 12.		STACK AREA = 12.5	
STACK ACEM = 17,79		STACK ACFM = 17.		STACK ACFH = 18,2	
* STACK DSCFM = 17.5		* STACK BSCFM = 17		* STACK DSCFM = 18,	
₹ ISOKINETIC = 94	v /·	Z ISOKINETIC =		2 ISOKINETIC = 9	
- 100N1NE110 - 79					

WROM "NRSSFLO"

RUN NUMBER HEX CR RI

RUN

RUN

VOL MTR STD ?

69.6550 RUN

STACK BSCFM ?

17,569.8000

FRONT 1/2 MG ?

.90192 BACK 1/2 MG ?

9.0000

RUN

F GR/BSCF = 4.2538E-7

F MG/MMM = 0.8818

F LB/HR = 0.0001

F KG/HR = 2.9057E-5 XROM -MASSFLO-

RUN NUMBER

HEX CR R2

RUN

VOL MTR STD ?

RUN 66.9778

STRCK DSCFM ?

17,228.9098 RUN

FRONT 1/2 MG ?

RUN .00361

BACK 1/2 MG ?

RUN 9,9999

F GR/DSCF = 8.3178E-7

F MG/MMM = 0.0019

F LB/HR = 9.9981 F KG/HR = 0.0001

XROM -MRSSFLO-

RUN NUMBER

HEX CR R3

RUN

VOL MTR STD ?

RUN 71.4300

STRCK BSCFM ?

RUN 18,615.6600

FRONT 1/2 MG ? RUH

.00149

BACK 1/2 MG ?

RUH 9.8889

F GR/BSCF = 3.2191E-7

F NG/MMM = 0.8887

F LB/HR = 4.9707E-5

F KG/HR = 2.2547E-5

APPENDIX M
Calibration Data

(This page left blank)

NOZZLE CALIBRATION DATA FORM

Date Calibrated by					
Nozzle identification number	mm (in.)	D ₂ ,	neter ^a D ₃ , mm (in.)	ΔD, b	D _{avg} c
#9	, 3 18	.3i 8	.317	.001	,318
			. ·		

where:

aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b $\Delta D = \text{maximum difference between any two diameters, mm (in.),}$ $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Date 21 Nov 88

Heter box number Nutch #2

Barometric pressure, $P_b = 30.02$ in. Hg Calibrated by Scott & Vaughn

		Gas V	olume	Ī	emperati	ure				
VAC	Orifice manometer setting (\Delta H), in H ₂ O	Wet test meter (V _y), ft ³	Dry gas meter (V _d), ft ³	Wet test meter (t _w), or	Dry Inlet (t _d), °F	gas met Outlet (t _d), °F		Time (0), min	Y.	ΔΗ@ in. H ₂ 0
4.0	0.5	5	5.057	ਨ 75 535	77 82	75 77	537.75	12.40	4.9926	1.73
4.0	1.0	5	5.031	74 534	84 89	77 80	542.5	-		1.87
4.0	1.5	10	10.101	1753/		84	547.75	15.35	1.0061	1.97
4.0		10	10.230		97	85 87	552.¢	B.45	<i>6.9</i> 981	2.00
4.0	3.0	10	10/170	76 220	100 163		<i>55</i> 4.75	18.92	1.4465	1.97
4-6	4.0	10	19191	76 538	185 ·	67 91	557.ø	9.35	1.0061	1,92
-						_	•	Avg	1.402	1,91

ΔH, in. H ₂ O	Δ H 13.6	$V_{\rm d}(P_{\rm b} + \frac{13.6}{13.6})$ (£ + 460)	$\Delta H\theta_{i} = \frac{0.0317 \Delta H}{P_{b} (t_{d} + 460)} \left[\frac{(t_{w} + 460) \theta}{V_{w}} \right]^{2}$
0.5	0.0368	(5)(30.01)(537.75) (5.057)(30.01+48-)(535)	$\frac{(0317)(5)}{(30.02)(537.75)} \left(\frac{(535)(12.4)}{(5)}\right)^2$
1.0	0.0737	(5,831)(30.02+13.2)(536)	(0317) (1.0) (636) (9.14) 2 (30.02) (547.5) (5
1.5	0.110	(10) (30.02) (547.75) (10.161) (30.62+15.15) (537)	(03(7)(1.5) (537)(538)] ² (30.52)(547.75) [10
2.0	0.147	(10,23)(30.02)(532) (10,23)(30.42 + 2.0)(538)	(6317)(2.0) (538)(13.45) 2 10
3.0	0.221	(10) (38.02) (554.75) (10,17)(30.02+2) (538)	(0317)(3.0) [538)(10.92)] 2 (30.02) (554.75)
4.0	0.294	(10) (30.02) (557) (10.19) (30.62 + 436) (538)	(0317)(\$.\$) (538)(9.35) 2 (30.\$)(557) (0

 $^{^{\}mathbf{a}}$ If there is only one thermometer on the dry gas meter, record the temperature under $\mathbf{t}_{\mathbf{d}}.$

Quality Assurance Handbook M4-2.3A (front side)

Date 13 JAN 87 Meter box number NUTECH #2 Plant PRF CFFT M'8 POST KELLY ARD Pretest Y 1,002. POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units) Barometric pressure, $P_b = \lambda 9.550$ in. Hg Dry gas meter number KELLY INB Test number 255 17251

Orifice	Gas volume	lume	Tem	emperature	ure					Y,
Banometer	Vet test	Dry 8as	Wet test		Dry gas meter	eter				4
setting,	Beter .	meter	Deter	Inlet	nlet Outlet	Y	1			$V_{\mathbf{w}} P_{\mathbf{b}} (\mathbf{t_d} + 460)$
in. H ₂ 0		((() () () () () () () () ()	(t),	(t _d ,),	÷	(t ^d);	Time (0),	Vacuum setting,	∵	V (Pb + AH)/t + 460
		•	•	oF.	oF.	\ \	min	in. Hg		13.6/\"
2.0	ं 01	77.432 Perus 76 536"K	76 536'K	83 93	36 80	543	ah 'E/	543 13,40 5.0	0,999	(10.05)(29.56.71)(536)
2.0	οτ	99.35 Just 36 536 K 4	36 536'K	43-	50 33	547.8 13.40	13.40	5.0	1.004	(8.13)(29.51)(5.31) (20.13)(29.91)(5.31)
2.0	10	111-160 10,180 76 536°K 9	76 536 K	96	83-	0.5 04.8 43.40 5.0	13.40	5.0	1.003	(3, 8) (39, 50)
									Y = 1.	,002

If there is only one thermometer on the dry gas meter, record the temperature under $\mathbf{t}_{\mathbf{d}}$

 $V_{\rm w} = 6as$ volume passing through the wet test meter, ft³.

YRANGE = 0.952-1052

 $d_d = 6as$ volume passing through the dry gas meter, ft³.

 $y_{\rm s} = 1$ Temperature of the gas in the wet test meter, °F. = 1 Temperature of the inlet gas of the dry gas meter, °F.

., = Temperature of the outlet gas of the dry gas meter, oF.

= Average temperature of the gas in the dry gas meter, obtained by the average of t and t , °F.

 $\Delta M = Pressure differential across orifice, in. <math>H_2O$.

= Ratio of accuracy of wet test meter to dry gas meter for each run.

= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y +0.05Y.

P, = Barometric pressure, in. Hg.

0 = Time of calibration run, min.

TYPE S PITOT TUBE INSPECTION DATA FORM

#6A

 $P_{A} = \frac{19/32 (0.5938)}{(0.5938)} = (in.) P_{b} = \frac{19/32 (0.5938)}{(in.)}$

 $D_{t} = 0.375$ cm (in.)

Comments: CONSTRUCTED 1 AW 40 CFR 60, APPA, METH2,

F'G-2.2. ASSIGNED BASELINE COEFFICIENT = 0.84

Calibration required? _____ yes ____ no

NUTTECH #2 Date 3 JAN 89 Thermocouple number IN LET / OUTLET Ambient temperature 26 °C Barometric pressure _____ in. Hg Calibrator CARRESCON Reference: mercury-in-glass MSTM 63F other _____ Reference Thermocouple Reference Temperature_b thermometer potentiometer difference, to Source a point temperature, temperature, number °C (specify) INLET HOT WHER 43.5 43 . 5 BATH ROM 26 TEAP 26 OUTLET HE WITH 43.5 BATH 26.5 ROOM 26 TEMP

Type of calibration system used.

b $\left[\frac{(\text{ref temp, °C} + 273) - (\text{test thermom temp, °C} + 273)}{\text{ref temp, °C} + 273}\right]$ 100<1.5%.

Quality Assurance Handbook M5-2.5 ** must be within 3°C of reference

STACK SENSOR CALIBRATION: 19-20 Oct 88

SENSOR #	REFERENCE TEMPERATURE (deg K) X axis	TEST TEMPERATURE (deg K) Y axis	•
P1	273.30 371.90 447.00	273.60 373.60 450.20	Regression Output: Constant -4.30 Std Err of Y Est 0.20 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.29%
P2	273.30 371.80 447.60	273.60 373.60 450.80	Regression Output: Constant -4.27 Std Err of Y Est 0.11 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.25%
Р3	273.30 371.90 447.60	274.10 374.10 450.80	Regression Output: Constant -2.96 Std Err of Y Est 0.03 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.01 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.11%
P4	273.30 371.80 447.60	273.60 373.60 450.80	Regression Output: Constant -4.27 Std Err of Y Est 0.11 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.27%

P5	273.30 371.90 447.60	274.10 373.60 450.80	Regression Output: Constant -3.03 Std Err of Y Est 0.3 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00 X Coefficient(s) 1.01 Std Err of Coef. 0.00	7 0 0
			% Deviation @ 2000 F(1093.3 K) = 1	.08%
P6	273.30 371.90 447.60	273.30 373.60 450.80	Regression Output: Constant -5.00 Std Err of Y Est 0.00 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00	9 0 0
			X Coefficient(s) 1.02 Std Err of Coef. 0.00	
			% Deviation @ 2000 F(1093.3 K) = 1	.37%
P7	273.30 371.90 447.60	273.30 373.60 450.80	Regression Output: Constant -5.03 Std Err of Y Est 0.09	
	, , , , , ,	100.00	R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00	0 0
	117.00		No. of Observations 3.00	0 0
	117.00		No. of Observations 3.00 Degrees of Freedom 1.00 X Coefficient(s) 1.02	0 0 0
P8	273.60 371.80 449.40	273.60 373.00 452.40	No. of Observations Degrees of Freedom X Coefficient(s) Std Err of Coef. 3.00 1.00	.37%
P8	273.60 371.80	273.60 373.00	No. of Observations Degrees of Freedom X Coefficient(s) Std Err of Coef. Deviation @ 2000 F(1093.3 K) = 1 Regression Output: Constant Std Err of Y Est R Squared No. of Observations 3.00 3.00 3.00	.37%

,20	IMF NERR
Date 19/0c/ 88	Thermocouple number 01
Ambient temperature 26 °C Ba	rometric pressure 29.175 in. Hg
Calibrator GARRISON/ Reference:	mercury-in-glass MBS
Scott	other

	other			
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICE 139TH	0	0	
	ROOM TEMP	25.5	26.1	0.6
				-

aEvery 30°C (50°F) for each reference point.

bType of calibration system used.

 $\frac{\text{C}\left[\frac{\text{(ref temp, °C + 273)} - \text{(test thermom temp, °C + 273)}}{\text{ref temp, °C + 273}}\right]}{\text{ref temp, °C + 273}} 100 \le 1.5\%.$

* MUST BE WITHIN 1°C OF REF

	10	. ,	MPINGER
Date	VOCT 88	Thermocouple number	DS
Ambient temp	erature <u>26°</u> °C Ba	z9.231 rometric pressure 29./73	in. Hg
Calibrator G	preison / Reference:	mercury-in-glass M89	5
	50077	other	

	other			
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICE BATH	0	0	_
_	ROOM TEMP	26.0	26.6	0.6
				-

^aEvery 30°C (50°F) for each reference point.

b_{Type} of calibration system used.

$$\begin{bmatrix}
(\text{ref temp, °C} + 273) - (\text{test thermom temp, °C} + 273) \\
& \text{ref temp, °C} + 273
\end{bmatrix}$$
100<1.5%

* MUST BE WITHIN POC OF REF

	40			IMPINGER
Date	19/8cT 85	Tr	nermocouple numb	er <u>D3</u>
Ambient te	mperature _	26 °C Baron	netric pressure	19.737/ 19.775 in. Hg
Calibrator	GARRISON/	Reference: n	mercury-in-glass	MBS
	Scott'		other	
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
C	ICE BATH	0	0.6	0.6
	ROOM TEMP	25.8	25.6	0.2

bType of calibration system used.

Type of calibration system used.

$$\begin{bmatrix}
(\text{ref temp, °C} + 273) - (\text{test thermom temp, °C} + 273) \\
& \text{ref temp, °C} + 273
\end{bmatrix}$$
100<1.5%.

* MUST BE WITHIN I'C OF REF

^aEvery 30°C (50°F) for each reference point.

		26 °C Barom Reference: m	ermocouple number etric pressure a ercury-in-glass	29,237/ 29,175 in. Hg
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature c difference,
0	ICE BATH	0	0.6	0.6
	Room	25.5	25.6	0.1

bType of calibration system used.

$$\begin{bmatrix}
(\text{ref temp, °C} + 273) - (\text{test thermom temp, °C} + 273) \\
& \text{ref temp, °C} + 273
\end{bmatrix}$$
100<1.5%

* MUST BE WITHIN I'C OF REF

aEvery 30°C (50°F) for each reference point.

IMPINGER

Date 1986t 88 Thermocouple number P5 29.232 Ambient temperature 26 °C Barometric pressure 29.175 in. Hg Calibrator GARRISON/ Reference: mercury-in-glass NBS other Reference Thermocouple Temperature_C Reference thermometer potentiometer Sourceb point number a temperature, difference, temperature, °C (specify) ICE BATH 0 0 0,6 0.6 Room 26 25,5 TEMP

$$\begin{bmatrix}
(\text{ref temp, °C} + 273) - (\text{test thermom temp, °C} + 273) \\
\text{ref temp, °C} + 273
\end{bmatrix}$$
100<1.5%

* MUST BE WITHIN / C OF REF

aEvery 30°C (50°F) for each reference point.

bType of calibration system used.

	· IMPINGER
Date 19/ 20 Oct 88	Thermocouple number
Ambient temperature	26 °C Barometric pressure 29.175 in. Hg
Calibrator Gurrisay/	Reference: mercury-in-glass MSS
Scar	other

	Other			
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature c difference
Ü	ICE BATH	0	0.6	0.6
_	ROOM	24	25.5	0.5
				-

^aEvery 30°C (50°F) for each reference point.

$$\frac{\text{C}\left[\frac{\text{(ref temp, °C + 273)} - \text{(test thermom temp, °C + 273)}}{\text{ref temp, °C + 273}}\right]}{\text{ref temp, °C + 273}} 100 \leq 1.5\%.$$

* MUST BE WITHIN I'C OFREF

bType of calibration system used.

Date 19/2000 88 Thermocouple number D7
29.232/
Ambient temperature 26 °C Barometric pressure 19.175 in. Hg

Calibrator GARISON/ Reference: mercury-in-glass NRS

other

Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICK BATH	0	0.6	0.6
	ROOM	26	25.5	0.5
				•

aEvery 30°C (50°F) for each reference point.

bType of calibration system used.

$$\begin{bmatrix}
(\text{ref temp, °C} + 273) - (\text{test thermom temp, °C} + 273) \\
\text{ref temp, °C} + 273
\end{bmatrix}$$
100<1.5%.

* MUST BE WITHIN I'C OF REF

Distribution List

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ AFLC/SGPE Wright-Patterson AFB OH 45433-5001	1 ·
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	1
OL AD, AFOEHL APO San Francisco 96274-5000	1 .
USAFSAM/TSK/EDH Brooks AFB TX 78235-5301	1 ea
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22304-6145	2
HQ HSD/XAE Brooks AFB TX 78235-5000	1
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
HQ AFLC/DE Wright-Patterson AFB OH 45433-5001	1
HQ SA-ALC/EM Kelly AFB TX 78241-5000	2
HQ SA-ALC/EHB Kelly AFB TX 78241-5000	2